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Abstract

A dynamical system is a mathematical object which describes the motion of a set of points
over time. Dynamical systems can be used to study differential equations, cryptography,
computer science, and even biology. Viewed as a purely mathematical object, one can ask
questions about the behavior of the dynamical system based on the structure of algebraic
objects associated with it. In this project we study two algebraic objects, centralizers and
topological full groups, associated to symbolic dynamical systems. The centralizer group tells
us about the symmetries a system possesses. Results relating to the centralizer historically
have indicated that the more complex the dynamical system is, captured by the Topological
Entropy, the more structure its centralizer has. Similarly, low complexity systems have
been shown to have very simple centralizers. This seems to suggest that one can recover
information about the dynamical system based upon its centralizer group. In particular, if
a system is known to have a certain centralizer group, we might want to draw conclusions
about the complexity of the system. In this project we present a class of high complexity
systems which have a very rigid centralizer, which shows the relationship is more subtle than
may have been originally thought.

We also study the topological full group of a dynamical system. This group completely defines
the system up to time reversal. We apply numerical estimates to draw conclusions about the
algebraic properties of this group. In particular, we seek to know when the topological full
group of a dynamical system is amenable. Amenability is an algebraic property that can be
thought of as having a probability measure on G. This measure would answer the question:
given a subset A of G, what is the probability that a random element of G is in A? We
apply Grigorchuk’s amenability criterion to answer this question.

Both these results provide us with information about the algebraic structure of dynamical
systems. If we know certain information about the different groups associated with a dy-
namical system, we can make conclusions about the system itself. As such, questions about
dynamical systems can now become questions about algebra, and vice versa. These results
mostly reveal the structure of symbolic dynamical systems and address the fundamental
question of mathematics about what is possible. However, our construction of a positive
entropy system with trivial centralizer can be interpreted as the existence of an information
channel with positive capacity that cannot be encrypted with substitution ciphers.

Key Terms. Dynamical Systems, Toeplitz System, Centralizer, Odometer, Topological Full
Group, Amenability
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1. Paper Layout

This paper is intended to be a self contained study on the Algebraic Structure of Dynamical
Systems. The paper begins with some background and motivation in Section 2. In this
section, we introduce where dynamical systems come from, and why they are important.
Here we discuss the wide range of applications of dynamical systems from chemistry to
physics, and computer science. It is important to note that the research performed in this
project was not done with the intention of directly applying it to any of these fields. The
main objective of this research project is to advance our knowledge and understanding of
Symbolic Dynamical Systems and various algebraic object associated with them. However,
we will discuss how one of our main results can be applied to cryptography.

In Section 3, we formulate three of our main results. A short discussion on a potential
application of these results is contained in that section.

In Section 4, we provide some basic background on the main objects of our study. This
section is intended to be accessible to a general audience.

In section 5, we provide a list of definitions which are important for the rest of the paper.
This sections contains all definitions which are later referenced.

Section 6, contains rigorous mathematical arguments. In this section we prove one of our
main results. In particular, we show that there is a class of multi-dimensional Toeplitz
systems which has a trivial centralizer. This is labeled as Theorem 6.20.

Section 7, contains an explicit construction of a multidimensional Toeplitz system which is
contained in the class of systems with a trivial centralizer, but which has positive entropy.
In this section, we take a desired a property of a dynamical system, and construct a system
that has that property. This differs from other fields of science in that we start with the
desired property and construct a system to exhibit that, as opposed to observing properties
in pre-defined systems or models. To the best of our knowledge, this construction is the first
example of such a system ever constructed.

In Section 8, we introduce the notion of an amenable group and develop the theory of
amenability.

In Section 9, we introduce the concept of the topological full group. We study the full group
of the Fibonacci Substitution and provide evidence as to why this group is amenable. This
evidence is provided in Appendix A as Mathematica code.
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2. Introduction/Motivation

The study of general dynamical systems began in 1890 by Henri Poincaré [33]. This text
sought to answer the three body problem in astronomy. Loosely, this problem seeks to
describe the motion of three astronomical bodies acting under Newton’s laws of motion,
given some initial conditions about their mass and velocity. Poincaré looked at differential
equations describing these bodies’ motion, and developed the theory of dynamical systems
to solve the three body problem without actually solving the differential equations. In this
light, dynamical systems can be thought of the study of trajectories in the phase space of
differential equations. Thus the field of dynamical systems was developed.

Gas Dynamics and Symbolic Dynamics. While dynamical systems were first developed
to understand and solve differential equations, they have since been used for understanding a
far wider range of physical and mathematical phenomena. For example, a dynamical system
can arise from studying how gas particles move in an enclosed container. Suppose we have
a closed container with a single gas molecule within. Furthermore, suppose we are tasked
with tracking the location of the molecule. It would be almost impossible to determine three
coordinates of the particle’s location at all times. So we can split the container into two
discrete halves. Next we label one half of the container A and the other B. After every
second, we write down which section of the container the particle is in. What we are left
with is a sequence of A’s and B’s. This process is shown in Figure 1. The sequence can be
thought of as extending forever into the future, as well as forever in the past. What we

Figure 1. Gas Dynamics

are left with is a bi-infinite sequence of A’s and B’s. Changing the initial position of the gas
particle will give us a different sequence. Collecting all such possible bi-infinite sequences,
we have what is called the phase space. This will be denoted by X. We say X is acted on
by the shift map T in the following way: for x = (xi)

∞
i=−∞ ∈ X, (Tx)i = xi+i. That is, the

shift map T shifts every symbol in each sequence one place to the left. The resulting pair
(X, T ) is a dynamical system. This is one particular example of a dynamical system arising
from a physical process. But dynamical systems can be studied much more generally, as will
be done in the rest of the paper.
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Quasicrystals. Quasicrystals are crystalline materials which are not perfect crystals. They
display the property that they are ordered but have no translational symmetry. That is,
given a quasicrystal it is impossible to slide it in any direction so that it perfectly matches
itself. This property is called being aperiodic. Crystals, on the other hand, do possess
translational symmetry. This sort of aperiodic structure was not thought to exist in nature,
but its natural discovery was the subject of the 2011 Nobel Prize in Chemistry. Clearly this
kind of structure is very important. It was found that the quasicrystalline structure can
in fact be realized as a tiling of the plane. In particular, a specific type of tiling known as
the Penrose Tiling is exactly a quasicrystal. Figure 2 depicts a Penrose Tiling of the

Figure 2. Penrose Tiling

two dimensional plane. We notice the striking structure in the tiling, but it is impossible to
translate, or shift, the tiling and get back what we started with. So the study of aperiodic
tilings such as the Penrose Tiling is equivalent to studying quasicrystals. Specifically, we will
be considering sequences and tilings that have this aperiodicity, and the dynamical systems
which arise from them.

Data Storage. Another motivating application comes from data storage in computers.
These examples are due to Lind and Marcus ([27]). Data is stored as sequences of zeros and
ones on a magnetic tape. As time moves forward, the computer reads the next bit in the
data sequence. With each discrete time step, this can thought of as the whole magentic tape
shifting over to the left. However the computer is not able to accurately read all sequences
of data. For example, if the binary sequence has a very large number of zeros all in a row,
it must keep track of how many have passed, which it does by keeping track of the time
between instances one ones. However it is very likely that the computer can encounter clock
drift. This means that the computer will lose accurate track of the time, hence distorting
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the data. Another problem that can be encountered is intersymbol interference. This is

Figure 3. Intersymbol Interference

depicted in Figure 3. With each one detected by the computer in the binary sequence, there
is an associated voltage drop. Each consecutive one has a voltage drop equal in magnitude
but reversed in polarity to the one before it. So, if two ones are too close together, the
opposing voltage drops can destructively interfere with each other causing the computer to
detect two zeros instead.

These are two issues that computers can potentially face when storing data as binary se-
quences. In order to mitigate these risks, one can stipulate that the binary sequences used
to store data can have no more than three zeros in a row, and no two ones consecutively.
Placing these kinds of restrictions on the binary sequences can be studied mathematically.
These constraints give rise to subshifts which can be studied with the rich field of dynamical
systems.

Next, we will discuss substitution ciphers which can be used to encrypt messages. These
types of ciphers have applications in symbolic dynamics. One of the main goals of this re-
search is to determine what the symmetries of certain dynamical systems look like. When we
consider data storage in computers as dynamical systems, as previously explained, we can
conveniently think of the symmetries of these systems as substitution ciphers. In particular,
the mechanism through which substitution ciphers are performed is exactly the same as sym-
metries of a symbolic dynamical system. One of our main results, which is the construction
of a positive entropy subshift with no symmetries is analogous to the existence of an infor-
mation channel with positive capacity, but which cannot be encrypted using substitution
ciphers.

Cryptography and Substitution Ciphers. There are a number of methods which are
used to encrypt data. One of the most basic encryption methods is known as the Caesar
cipher. In this cipher, the whole alphabet is shifted a certain number of places, and each
letter of the unencrypted message is replaced with the corresponding letter from the shifted
alphabet. For example, we can shift the alphabet six places forward, as in Figure 4. The
outer ring indicates the unencrypted alphabet, while the inner ring indicates what each
letter maps to when encrypting. For example, the message “THIS IS A MESSAGE” would
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be encrypted to “ZNOY OY G SKYYGMK”. Decryption is easy, as we then just go from
the inside ring out.
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Figure 4. Caesar Cipher

This cipher is very easy to break. For example, we could just try rotating the disk up to 26
times until we had something sensible. Additionally, this is susceptible to frequency analysis.
Since it is known which letters in the English language appear most frequently, a reasonable
length encrypted message can be subject to frequency analysis.

Another similar type of cipher is known as the substitution cipher. Like the Caesar cipher
each letter is replaced with another letter, but not in the same order as the alphabet. For
example, in Figure 5 we have the key for a substitution cipher. The top row is the normal
alphabet, and the bottom row is the alphabet jumbled up. This tells us what each letter
must be substituted with when encrypting. Note that unlike the Caesar cipher, the encrypted
alphabet is not in the same order. With this key, the message “THIS IS A MESSAGE” would
be encrypted to “HADX DX B SKXXBNK”.

Again, this cipher is very easy to crack for the same reasons as above. It is very susceptible
to frequency analysis.

However, the substitution cipher can be enhanced where instead of substituting one letter
with one letter, we substitute multiple letters with multiple letters. For example, we could

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B V G Q K M N A D Z C W S E O Y F J X H T L P U I R

Figure 5. Substitution Cipher
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come up with a substitution rule that reassigns every pair of two letters with another pair of
two letters. This is somewhat challenging in practice since there are 262 = 676 combinations
of two letters in the alphabet. Additionally, it is still susceptible to frequency analysis since
combinations such as “TH” are more common in English than other two letter combinations.
So shifting to even higher substitution blocks would require at least 263 = 17576 substitution
rules.

We get around this telescoping issue by limiting which alphabet we are using. In particular,
we may only consider substitution ciphers on binary sequences. In this case, the alphabet is
only two letters, namely 0 and 1. And so we can substitute blocks of three letters at a time,
which would require only 23 = 8 substitution rules.

Under this construct, consider having a binary sequence, which for illustration purposes we
will show as the letters being the colors black and white. We can explicitly define a rule for
each of the eight possible combinations of these colors over three spaces.

Figure 6. Substitution Rules

In Figure 6, we see an example of substitution rules that can be used to encode blocks of
three letters at a time. Using these rules, the input sequence at the top of Figure 7 would
be encrypted to the output sequence at the bottom. In order to encrypt, three letters at a
time are considered, and the rules list is referenced to encrypt the sequence.

Figure 7. Encrypting a Sequence

3. Results

Here we provide a list of our results, and how they can be applied. It is important to
note that the mathematical results achieved in this research are intended purely for the
development of knowledge. No specific applications were sought in pursuing these results.
Often in mathematics results are developed with no specific application, and years later
applications are found. For example, in ancient Greece, conic sections were studied as purely
mathematical objects. That is, they studied mathematical objects such as circles, parabolas,
hyperbolas, etc. purely for their mathematical merit. However, over 2000 years later these
were found to have profound applications in the study of planetary orbits ([32]). This is
not to suggest that the mathematics performed in this research will have such profound
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implications, but just to demonstrate that studying math for the sake of studying math can
often reveal much about the world, even if not immediately obvious.

Throughout the paper, we prove the following three main theorems:

(1) Theorem. The centralizer of a Toeplitz system embeds into the centralizer of its
maximal equicontinuous factor.

(2) Theorem. There is a class of multi-dimensional Toeplitz Systems which have a triv-
ial centralizer.

(3) Theorem. This class of multi-dimensional Toeplitz Systems contains systems of
positive entropy.

The second and third results can be interpreted in the context of information theory. The
kinds of systems studied for these results can be thought of as information channels. Un-
der this context, the entropy of these systems is exactly the Shannon Entropy, or channel
capacity. So having positive entropy means that there is positive channel capacity in these
systems, which in turn means that messages can be reliably sent and received. However,
since these systems have a trivial centralizer, that means that these messages cannot be
encoded using any substitution ciphers.

Additionally, in Section 9, we provide strong numerical evidence to suggest that the topo-
logical full group of the Fibonacci Substitution system is amenable. The kind of numerical
methods used in this section can be used in the future to seek examples of groups which are
simple, finitely presented, infinite and amenable. Finding an example of such a group is still
an open problem in mathematics. The methods we used may be able to provide such an
example by exploring the topological full group of multidimensional systems.

4. Background

In this section, we will provide some background and basic working definitions. This will
allow the reader to understand and appreciate the results achieved.

Toeplitz Systems. A specific type of dynamical system that will be studied in this paper is
a Toeplitz system. These systems are symbolic dynamical systems which arise from sequences
satisfying certain properties. The sequences in these systems have the property that they
look as if they repeat, or are periodic, but in fact never do. In particular, in one dimension, if
you shift the sequence any number of times it will never come back to where it started, but for
every position in the sequence there is an infinite arithmetic progression such that whichever
symbol is in the first position is also in every position along that arithmetic progression.
This is best illustrated through an example.

Example 4.1. (Due to Downarociz [16]). Consider the alphabet A = {0, 1} and the following
one-sided sequence on this alphabet

ω = 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 . . .
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We note that in the first position there is a zero. The arithmetic progression starting at the
first position of {0, 2, 4, 6, . . .} contains a zero. In particular, the first position is a zero, and
so is every other position after that. The second position contains a one, and every fourth
position from there is also a one. We call ω a Toeplitz sequence.

We note that this example has in one dimension the kind of aperiodicity that the Penrose
Tiling had in two dimensions. In order to get a Toeplitz System, we take a Toeplitz

Figure 8. 2-dimensional Toeplitz Array

sequence as above. Next we shift it both forward and backwards infinitely, and collect the
new sequence we have after each shift. We will have an infinite set of sequences. This set
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is called the orbit of the point ω. Specifically, we denote the orbit of ω as O(ω) and is
defined as O(ω) = {T n(ω)|n ∈ Z}. Next we take the closure of this set. Loosely speaking,
the closure of a set is all points in the set as well as all points which can be approached
arbitrarily closely by points in the set. This is denoted as O(ω). The pair (O(ω), T ) is a
Toeplitz system.

Additionally, Toeplitz systems can be constructed in any number of dimensions. In dimen-
sions higher than one, we call a Toeplitz sequence a Toeplitz array to indicate the higher
dimensional nature of it. In Figure 8, we have a two-dimensional Toeplitz array. This array
is built using two colors, black and white, which function as our alphabet. This is an example
of a substitution tiling of the plane.

Odometers and Their Almost One-to-One Extensions. An odometer is a specific kind
of dynamical system. In order to understand what they are it is easiest to look at a specific
example.

Example 4.2. We will start with the sequence s = {s1, s2, . . .} = {2, 4, 8, 16, 32, . . .}. We
construct points j = (j1, j2, . . .) which themselves are sequences so that the following is true:
when ji+1 is divided by si, the remainder is ji. For example, j = (1, 3, 3, 11, 27, . . .). We note
that 0 ≤ ji < si. Another point in this odometer is j

′ = (0, 0, 4, 12, 12, . . .). Finally we can
add these two points together in the expected way: j + j′ = (1, 2, 7, 7, 7, . . .). The addition
in the ith component is the remainder when ji + j′i is divided by si. For example, in the
fourth component of j + j′ we have 11 + 12 = 23. When 23 is divided by 16, the remainder
is 7, and hence the fourth component of j + j′ is 7.

An odometer in a car works in a similar way. We consider the sequence s = {10, 10, 10, 10, . . .}
and we will write points j from right to left, i.e. j = (. . . j4, j3, j2, j1). The car odometer starts
at j = (. . . 0, 0, 0, 0) and each time one mile is driven, the number j′ = (. . . , 0, 0, 0, 1) is added
to the current reading of the odometer. The first nine miles will clearly bring the odometer
reading up to (. . . , 0, 0, 0, 9). Driving one more mile will show a reading of (. . . , 0, 0, 1, 0),
which we understand to mean 10 miles have been driven. If nine more miles are driven, the
odometer will read (. . . , 0, 0, 1, 9) and then the next mile will turn it to (. . . , 0, 0, 2, 0). So
the odometer shown in Example 4.2 works exactly the same as a car odometer, hence the
name.

Example 4.2 is a simple example of an odometer, but they can be generalized much further.
Odometers are related to Toeplitz systems in a very unique way. It turns out that a Toeplitz
system is an almost one-to-one extension of an odometer. Before discussing what exactly
this means, it is important to note that this gives us another way to understand Toeplitz
systems. Before we discussed Toeplitz systems by starting with specific Toeplitz sequences
or arrays, but here we can study Toeplitz system in more abstract ways.

Let us denote an odometer by (Y, S). To say that (X, T ) is an almost one-to-one extension
of (Y, S) means that there is a function π : (X, T )→ (Y, S) such that for every point y in Y ,
there exists a point x in X such that π(x) = y. Furthermore, there must be at least one point
y′ in Y that has a unique point x′ in X such that π(x′) = y′. If these conditions are satisfied
then (X, T ) is an almost one-to-one extension of (Y, S). On the other hand, a one-to-one
extension would mean that every point y in Y has a unique point x such that π(x) = y.
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It can be shown that the almost one-to-one extensions of odometers are exactly Toeplitz
systems, and Toeplitz systems are exactly almost one-to-one extensions of odometers.

Symmetries and Centralizers. The key question we explore in this paper isWhat do the
symmetries of a Toeplitz system look like? Symmetries are very important in mathematics.
A key object in mathematics is a group, and a fundamental example of a group is the group
of symmetries of a shape. For example, in Figure 9, we see the six symmetries of an

Figure 9. Symmetries of a Triangle

equilateral triangle. We can perform any one of these symmetries followed by another, and
the end result will always be one of these six symmetries. Much like the symmetries of
a triangle, the symmetries of a dynamical system form a group. We call this group the
centralizer. However it is a little more difficult to visualize the symmetries of a general
dynamical system. So we define symmetries of a dynamical system in more abstract terms,
and try to understand how they behave. Specifically, a symmetry will be an invertible
function on the dynamical system which commutes with the shift. These symmetries must
also be continuous, and we must be able to reverse them continuously. This is called a
homeomorphism. In particular, say (X, T ) is a dynamical system. Then if ϕ : X → X is
a homeomorphism, we have ϕ ∈ C(T ) ⇐⇒ ∀x ∈ X,ϕ(Tx) = T (ϕ(x)), where C(T ) is the
centralizer of (X, T ). In other words, we want to be able to apply a symmetry and then the
shift and get the same result if we applied the shift first and then the symmetry. Visually,
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ϕ ∈ C(T ) if the following diagram commutes:

X
T−−−→ X

ϕ

⏐⏐� ⏐⏐�ϕ

X −−−→
T

X

An important result in symbolic dynamics, Hedlund [19], is that, every symmetry of a
symbolic dynamical system is a block code. What this means is that, every symmetry of
a symbolic dynamical system is a function based upon a finite window size of a sequence.
Suppose we have a function ϕ which we know is a symmetry of a system (X, T ). In order
to understand what ϕ does to a point x ∈ X, without knowing anything else about ϕ or
(X, T ), we automatically know that in order to determine the symbol that appears at a
location in ϕ(x), we need to look at a finite window around the corresponding location in x.
In particular, if we denote by xi the symbol in the i

th location of x then

ϕ(x)i = f(xi−m, xi+k)

for some function f .

This means in order to determine ϕ(x)i, the ith coordinate of the image of x under the
symmetry ϕ, we only need to look at the ith coordinate in x, look back m spaces and
forward k spaces. Based on this finite window, we can determine what ϕ(x)i is.

Example 4.3. Let (X, T ) be a symbolic dynamical system. Let x = . . . 011011110001 . . ..
Suppose ϕ is a symmetry of (X, T ) and we know that it acts according to the following
rules:

0110 �→ 0

1101 �→ 0

1011 �→ 1

0111 �→ 1

1111 �→ 0

1110 �→ 1

1100 �→ 1

1000 �→ 0

0001 �→ 1

Then We would have ϕ(x) = . . . 001101101 . . .. The important fact to note is that for every
single symmetry of any symbolic dynamical system, a list of rules can be written, as above,
which tells how any finite block is changed.

We note that this is exactly what is happening in Figure 6 and Figure 7 above. Indeed
symmetries of symbolic dynamical systems are analogous to substitution ciphers.



15

5. Definitions and Notation

In this section, we provide precise mathematical definitions of terms used throughout the
paper. First, some basic notation will be explained.

A set S is a collection of elements. There can be infinitely many or finitely many elements in
a set. We denote the number of elements in S by |S|. This is sometimes called the cardinality
or the order of S. If s is an element of S, we write s ∈ S. If S ′ is another set, and every
s ∈ S ′ is also in S, we say that S ′ is a subset of S and is written S ′ ⊆ S. We say S ′ is a
proper subset of S if S ′ 
= S. Two subsets are said to be disjoint if they share no common
elements. The power set of a set S, labeled P(S) is the set of all subsets of S. There are
2|S| elements in the power set of S.

In order to define a set S, we can write S = {s | s has some property P}. This means the
set S consists of all elements s which satisfy the property P . For example, we can define
S = {s | s is blue} and S would be the set of everything that is blue.

Given a set S, the set S × S is the set of all ordered pairs of elements from S. Specifically,
S × S = {(s1, s2) | s1, s2 ∈ S}. Let S and T be two sets. The union of these sets, written
S ∪T is the set of all elements of S and T . In particular, S ∪T = {s | s ∈ S or s ∈ T}. The
intersection of S and T written S ∩ T is the set consisting of the elements which are both
in S and T , i.e. S ∩ T = {s | s ∈ S and s ∈ T}.
Example 5.1. Let S = {0, 1, 2, 3} and T = {3, 4, 5, 6}. Then S ∪ T = {0, 1, 2, 3, 4, 5, 6} and
S ∩ T = {3}.

The symbol ∀ means ’for all’. For example, ∀s ∈ S means every element s in S. The symbol
∃ means ’there exists’. For example ∃s ∈ S means that there is an element s in S.

Definition 5.2 (Partially Ordered Set). Let S be a set, and ≤ be a relation on S which
tells us how two elements of the set are related. We call (S,≤) a partially ordered set if for
all a, b, c,∈ S the following hold:

(1) a ≤ a. This is known as reflexivity

(2) If a ≤ b and b ≤ c then a ≤ c. This is known as transitivity

(3) If a ≤ b and b ≤ a then a = b. This is known as antisymmetry

Definition 5.3 (Groups). Let G be a set and · be a function from G × G to G such that
the following hold:

(1) ∃e ∈ G such that e · g = g · e = g for all g ∈ G. This element e is unique, and is
called the identity.

(2) ∀a, b, c ∈ G, (a · b) · c = a · (b · c). This is called associativity.
(3) For every a ∈ G, there exists a−1 ∈ G such that a · a−1 = a−1 · a = e. This is called

the inverse of a

If, additionally, we have that a · b = b · a for all a, b ∈ G, we say that the group G is abelian.
In this case, we say the group commutes.
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If H ⊆ G, and H itself is a group, we say that H is a subgroup of G. When there can be no
confusion, this is also denoted as H ⊆ G.

Example 5.4. Here we provide two examples of groups, one finite and one infinite, as well as
an example of something that is not a group.

• Consider the set of integers Z along with the operation of addition. We note that 0
is the identity element, and that the operation is associative. Also, the negative of a
number is its inverse. Furthermore, the order of addition does not matter, so this is
also an abelian group.

• The set of integers Z with the operation of multiplication is not a group. Note
that the identity element would be 1, but there is no element of this set that when
multiplied by 0 yields 1, i.e. 0 has no inverse, so this cannot be a group.

• Consider the set {0, 1, 2} with addition modulo 3. That is, when adding two numbers,
take the remainder of the results when divided by three. For example, 7 + 6 = 13
which when divided by three has remainder 1. So in our set, 0 is the identity and the
addition is associative. Additionally the inverse of 0 is 0 (the inverse of the identity
is always itself), the inverse of 1 is 2, because 1+2 = 3 which has no remainder when
divided by 3, and the inverse of 2 is 1. So this is a group. This group is called the
cyclic group of order 3 and is sometimes denoted Z3

Groups can be defined explicitly by their members and the function of multiplication. Ad-
ditionally they can be defined as a combination of generators and relations.

Definition 5.5 (Generators and Relations). Let x1, x2, . . . , xt be symbols and r1, r2, . . .
concatenation of these symbols. The group G = 〈x1, x2, . . . , xt | r1, r2, . . .〉 has generators
x1, x2, . . . , xt and relations r1, r2, . . . and is defined as concatenations of the generators, known
as words, but if any of the relations appear in a word, that is reduced to the identity.

This is best illustrated in an example.

Example 5.6. Let G = 〈a, b | ab = ba〉. So, this group is generated by a, b subject to the rela-
tion ab = ba. We can interpret this relation as aba−1b−1 = e, where e is the identity element
in the group. So a is a word in the group, and so ababbba. But the word abbaba−1b−1ab can
be reduced to abbab, since the aba−1b−1 in the middle can be reduced to the identity. This
group is actually Z2 = Z× Z.
Definition 5.7 (Quotient Group). Let G be a group and H ⊆ G a subgroup. For g ∈ G,
we define the coset gH = {gh | h ∈ H}. The set Hg is defined in a similar way. We define
the quotient group as G/H = {gH | g ∈ G}, i.e. it is the set of cosets of the subgroup H.
This set itself is a group with the group operation being (gH)(g′H) = (gg′)H.

If gH = Hg for all g ∈ G, we call H a normal subgroup.

Definition 5.8 (Isomorphism). Let G,G′ be two groups. We say G is isomorphic to G′ if
there exists a function ϕ : G→ G′ such that the following hold:

(1) ϕ(a · b) = ϕ(a) · ϕ(b) for all a, b ∈ G.

(2) ∀g′ ∈ G′ there exists a g ∈ G such that ϕ(g) = g′
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(3) ∀g1, g2 ∈ G, we have ϕ(g1) = ϕ(g2)⇒ g1 = g2

The first condition ensures that ϕ is a group homomorphism, while the last two conditions
ensure ϕ is a bijection.

When two groups are isomorphic they are considered mathematically indistinguishable.

Definition 5.9 (Metric Space). A set X is called a metric space if there exists a distance
function d : X ×X → R such that the following hold:

(1) d(x, y) ≥ 0 for all x, y ∈ X with d(x, y) = 0⇔ x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X

(3) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. This is called the triangle inequality.

A set on which a metric can be defined is called metrizable.

Example 5.10. The real numbers R equipped with the distance function d(x, y) = |x− y| is
a metric space.

Definition 5.11 (Open, Closed, Clopen Sets). Let (X, d) be a metric space. An open set is
a set U such that ∀x ∈ U , there exists r > 0 such that {y ∈ X | d(x, y) < r} ⊆ U .

A closed set is the complement of an open set.

A clopen set is a set which is both closed and open.

Example 5.12. Let (X, d) be R with the usual distance metric. Then (0, 1) is an open set,
i.e. the interval from 0 to 1 not including the points 0 and 1. The set [0, 1] is a closed set,
i.e. the interval from 0 to 1 containing both 0 and 1. The empty set ∅ is clopen, i.e. it is
both closed and open.

Definition 5.13 (Continous Functions). A function f : A→ B is continuous if the inverse
image of an open set in B is open in A. We say f is a homeomorphism is f is continuous,
and f has a continuous inverse.

Example 5.14. The function f : [0, 1] → [0, 2] defined by f(x) = 2x is a homeomorphism.
This tells us that the sets [0, 1] and [0, 2] can be considered, in many senses, to be the same.

Definition 5.15 (Compact Space). A set X is called compact if for every open cover, there
is a finite subcover. That is for every collection of open sets that cover the entire space X,
we can pick finitely many of these open sets that still cover X. On the real line, R with the
absolute value metric as above, this is equivalent to a set being closed and bounded.

Definition 5.16 (Closure). Let (X, d) be a metric space. The closure of X is denoted by
X. We say y ∈ X if and only if there exists a sequence {xi} ⊆ X such that xi → y. That
is, y is in the closure of X if there is a sequence of points in X which approach y arbitrarily
closely. Informally, a point is in the closure of a set if the set gets arbitrarily close to that
point.

Example 5.17. The following is an example of a set and its closure. Consider the set (0, 1).
That is the set of all real numbers between 0 and 1, not including 0 and 1. The points in
this set get arbitrarily close to both 0 and 1 however, so the closure of (0, 1) is [0, 1].

Definition 5.18 (Density). Let A ⊆ X. We say A is dense in X if A = X.
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Example 5.19. Building on the previous example, the set (0, 1) is dense in [0, 1], since (0, 1) =
[0, 1].

Definition 5.20 (Topological Space). A topological space is a setX endowed with a topology.
That is, a collection of subsets of X which are closed under arbitrary unions and finite
intersections, as well as containing ∅ and X. These sets are understood to be open.

Example 5.21. Let X = {0, 1, 2}. The collection of all subsets of X forms a topology on X,
and is called the discrete topology. In particular,

τ = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
is a topology on X.

Definition 5.22 (Basis). Given a set X endowed with a topology τ , we say that B is a basis
for the topology τ if every member of τ can be realized as the union of members of B.

Example 5.23. Continuing with Example 5.21, the collection

B = {{0}, {1}, {2}}
forms a basis for the discrete topology τ .

Definition 5.24 (Cylinder Set). Let {Xi}∞ı=0 be a collection of topological spaces. The
basis for a topology on Π∞i=0Xi, the Cartesian product of these topological spaces, contains
cylinder sets. That is, sets whose where a finite number of coordinates are fixed.

Definition 5.25 (Symbolic Dynamics and Subshifts). Let A be a finite set with |A| = a.
The full a-shift is the set of all bi-infinte sequences (xi)

∞
i=−∞ where xi ∈ A for all i. This is

denoted as AZ. The shift operator T is defined on AZ as (Tx)i = xi+1 for all x ∈ AZ and
all i. A subset X ⊆ AZ is a subshift if TX ⊆ X, i.e. X is T -invariant. This is a symbolic
dynamical system and is denoted as (X, T ).

In general, we denote the full d dimensional n-shift by AZ
d
. This set is endowed with the

product topology from the discrete topology in each coordinate. Cylinder sets in which
we fix a finite number of coordinates form a basis for the topology. For x ∈ AZ

d
we write

x = {x(v)}v∈Zd . We call x a Zd array. The group Zd acts on AZ
d
, denoted by T z(x) for z ∈ Zd

and x ∈ AZ
d
as follows: T z(x) = {x(z + v)}v∈Zd . The orbit of an array is {T v(x) : v ∈ Zd}.

A subset X ⊆ AZ
d
is called a subshift if it is closed under the action of Zd.

For the sake of completeness, we note that symbolic dynamics can be studied over general,
discrete groups. In this case, let G be a discrete group. Then ΣG is acted on by the group
G. While in this paper we restrict our study of symbolic dynamics to Zd systems, we note
that many of the results can be extended to G systems for more general groups G.

It is important to note that subshifts are both compact and metrizable.

Definition 5.26 (Entropy). Let (X, T ) be a subshift. Let Bn(X) be the number of words
of length n which occur in X. Then the entropy, h(X) is

h(X) = lim
n→∞

log(|Bn(X)|)
n
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Example 5.27. Let (X, T ) be the full 2-shift. We note that |Bn(X)| = 2n since for each
position in a block of length n, we have two choices. So,

h(X) = lim
n→∞

log(|Bn(X)|)
n

= lim
n→∞

log(2n)

n
= log(2)

The base of the logarithm isn’t really important, but sometimes we will define it to be base
2 so that the entropy of the full shift is 1.

Definition 5.28 (Toeplitz Sequence). A sequence ω ∈ AZ is a Toeplitz sequence if
(∀n ∈ Z)(∃l ∈ N)(∀k ∈ N) ω(n) = ω(n+ kl)

We refer the reader to Example 4.1.

Definition 5.29 (Dynamical Systems). A dynamical system is a pair (X,G) where X is
a compact metrizable space, and G acts on X by homeomorphism. We denote the action
of g ∈ G on a point x ∈ X as gx. In the case that G is Z, we often write (X, T ) where
T is understood to be the generating action of Z. This draws the connection between
dynamical systems and subshifts. Indeed, subshifts are dynamical systems. We denote the
orbit of a point x ∈ X as OG(x) = {gx | g ∈ G}. If the group G is Z, then the orbit is
OT (x) = {T n(x) | n ∈ Z}. When the group is understood, the orbit will be denoted simply
O(x). A dynamical system is minimal if every orbit is dense. In fact it is enough to show
that there is one dense orbit.

We note that if we take the orbit closure, i.e. O(x) of a single point x ∈ AZ in the full shift,
we will always have a subshift.

Definition 5.30 (Toeplitz System). A Toeplitz system is the orbit closure of a Toeplitz
sequence.

Definition 5.31 (Centralizer). Let (X,G) be a dynamical system and Homeo(X) be the
set of all homeomorphisms from X to itself. The centralizer C(G) is defined as C(G) = {ϕ ∈
Homeo(X) | ϕg = gϕ ∀g ∈ G}. That is, the centralizer of a dynamical system is the set of
all homemorphisms of the system which commute with the group action. When the group is
Z, this is equivalent to the set of homeomorphims which commute with the shift action T .
It can be shown that the centralizer of any dynamical system is a group with the operation
of composition.

Given a dynamical system (X, T ) acted on by Z we say that the centralizer C(T ) is rigid if
∀ϕ ∈ C(T ), ϕ(x) = T n(x) for all x ∈ X and some n ∈ Z.
Definition 5.32 (Factor Map). Let X, Y be sets and π : X → Y be a function. We say π
is a factor map if for all y ∈ Y , there exists an x ∈ X such that π(x) = y. This is also called
a surjection or onto map.

Definition 5.33 (Equicontinuity). A system (X,G) is equicontinuous if for all ε > 0, there
exists δ > 0, such that for all x, y ∈ X if d(x, y) < ε, then d(g · x, g · y) < δ for all g ∈ G.

Definition 5.34 (Extension). Let (X,G), and (Y,G) be two minimal systems. If there
exists a continuous surjection π : X → Y which preserves the action of G, we say that X is
an extension of Y , and that Y is a factor of X. See Definition 5.32.
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Given two factor maps π and π′, we say that π is larger than π′ if there exists a third factor
map π′′ such that π′ = π′′ ◦ π. As such, we can discuss the maximal factor of a system. It is
a known fact that every dynamical system has a maximal equicontinuous factor.

Definition 5.35 (Cantor Set). A topological zero-dimensional compact metric space without
isolated points is called a Cantor Set.

6. Toeplitz Systems

In this section, we provide rigorous mathematical arguments concerning results about Toeplitz
Systems. We start with some basic definitions and then prove results about odometers.
Here we classify Toeplitz systems as almost 1− 1 extensions of odometers. Next we present
Toeplitz systems as symbolic dynamical systems. Here we prove that there is a class of
multi-dimensional Toeplitz systems with a trivial centralizer.

Historical Account and Previous Results. Toeplitz dynamical systems were first intro-
duced by Jacobs and Keane [22]. They provided a classical definition for a Toeplitz sequence
over {0, 1}. Markley [28] studied these sequences and showed the equivalence of various
definitions of them. The orbit closure of a Toeplitz sequence is regarded as a Toeplitz flow.
Markley and Paul [29] showed that these flows were exactly almost one-to-one extensions
of odometers, or the group of p-adic integers. See Hewitt [20] for a general discussion of
the group theoretic properties of the group of p-adic integers. For a general survey of sym-
bolic dynamics, we refer the reader to Kitchens [24]. For a good survey on Z odometers and
Toeplitz flows, the reader is referred to Downarowicz [16]. Recently the definition of Toeplitz
flows was extended to flows over Zd by Cortez [10], and then to flows over general groups
Cortez [11], and Krieger [25].

Sometimes called the automorphism group of the dynamical system in the literature, the
centralizer of a dynamical system has an intricate relationship with its parent dynamical
system. For example, Boyle, Lind and Rudolph [5] study the centralizer of shifts of finite
type and show that they are countable, residually finite and contain the free group on
two generators. Several results have been shown by Cyr and Kra ([12], [13], [14]) which
relate varying levels of complexity of symbolic dynamical systems to algebraic properties
of their centralizers. We notice that systems with positive entropy tend to have very large
centralizers. For example, the centralizer of the full shift contains every finite group and
the free group on two generators. On the other hand, Donoso, Durand and Petite [15]
showed that some classes of low complexity symbolic dynamical systems have very small
centralizers, in the sense that they consist only of powers of T . Bulatek and Kwiatkowski
[7], [8] study the centralizer of a class of high complexity Toeplitz systems. The centralizer of
multidimensional symbolic dynamical systems is studied by Hochman [21]. For example, he
shows that the centralizer of a positive entropy multidimensional shift of finite type contains
a copy of every finite group.

The main question this section seeks to answer is whether there are multidimensional sys-
tems with a trivial centralizer and positive entropy. Following the ideas of Bulatek and
Kwiatkowski in [8], which developed this result in one dimension, we establish this result
with a constructive proof.
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In Section 6 we present main facts with proofs regarding general G-odometers, where G
is a residually finite group. For the reader’s convenience, we include the proofs, otherwise
scattered across multiple sources. In particular we show that the centralizer group of Zd-
Toeplitz systems embeds into the centralizer group of its maximal equicontinuous factor,
which is a Zd-odometer, and so is abelian. In section 6, we construct a class of Zd-Toeplitz
systems that have trivial centralizers. Then in Section 7, we show that this class contains
systems of positive entropy. In this section we provide an explicit construction of a two
dimensional Toeplitz of positive entropy.

The topological spaces discussed in this section will be Cantor sets. Notice that by a theorem
of Brouwer [6], every Cantor set is homeomorphic to the middle-thirds Cantor set, and so
all Cantor sets are homeomorphic.

Odometers. In this section, we will recall some basic facts about odometers and their almost
1− 1 extensions. In particular, we show that the centralizer of an odometer is abelian, and
the centralizer of the almost 1−1 extension of an odometer is also abelian. These results are
mostly known, but are scattered. In particular, the proof of Lemma 6.11 appears in Veech
[34] and the proof of Proposition 6.12 appears in Olli [30]. We present slightly modified
proofs for clarity and the reader’s convenience.

Definition 6.1. A group G is called residually finite if the intersection of all its finite index
normal subgroups is normal.

Definition 6.2. Let G be a residually finite group, and G = G0 ⊇ G1 ⊇ G2 ⊇ . . . be nested
normal subgroups such that

⋂
Gn = {0}. Let πn be the natural homomorphism from G/Gn

onto G/Gn−1, i.e. πn(hGn) = hGn−1 for h ∈ G. The G-odometer, G, is the inverse limit

G = lim←−(G/Gi; πi) = {(gk)∞k=0 ∈
∞∏
k=0

G/Gk | πn(gn) = gn−1 for all n ≥ 1}

An element g ∈ G acts on an element y = (yi)
∞
i=0 ∈ G as g · y = (g · yi)∞i=0.

First we prove that G embeds into G.

Lemma 6.3. Let φ : G→ G be defined as g �→ (gG1, gG2, . . .). Then φ is an embedding.

Proof. Let g1, g2 ∈ G. Suppose

φ(g1) = (g1G1, g1G2, g1G3, . . .) = (g2G1, g2G2, g2G3, . . .) = φ(g2)

So g1Gi = g2Gi for all i. Therefore g−11 g2 ∈ Gi for all i, and so g−11 g2 ∈
⋂

Gi = {0}. So
g1 = g2. �

So we have shown that G embeds into G in a natural way. We now prove that (G,G) is
minimal.

Lemma 6.4. The system (G,G) is minimal.
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Proof. Consider the identity element, e ∈ G. In particular, e = (G1, G2, G3, . . .). Let
y = (yi)

∞
i=0 ∈ G. So, for each n, we have yn = ynGn, where yn ∈ G is a representative of the

coset. Note

yn · e = yn(G1, G2, G3, . . . , Gn, . . .)

= (ynG1, ynG2, ynG3, . . . , ynGn, . . .)

= (y1G1, y2G2, . . . , ynGn, . . .) = (y1, y2, . . . , yn, . . .)

So e · yn agrees with y in the first n coordinates. And so we can get arbitrarily close to y as
we increase n. Hence e has a dense orbit.

Now let a, b ∈ G. Note we can find a sequence bn such that bn · e→ ab−1, since e has a dense
orbit. Then (bn · e) · b→ a so bn · b→ a. Therefore b has dense orbit. �
Definition 6.5 (Centralizer). Let (X,G) be a dynamical system. The centralizer, C(G) is
defined as

C(G) = {ϕ ∈ Homeo(X) | gϕ = ϕg for all g ∈ G}

That is, the centralizer of a system consists of all homeomorphisms of the system which
commute with the group action. It can be checked that this is a group under composition.

Next we show that elements of the centralizer of an odometer act as translations of the
odometer.

Lemma 6.6. Let ϕ ∈ C(G,G). There exists g0 ∈ G such that ϕ(x) = x · g0 for all x ∈ G.

Proof. Let x ∈ G. Since the orbit of e is dense, by Lemma 6.4, there exists a sequence
{gn} ⊆ G such that gn · e → x. Since ϕ is continuous, ϕ(gn · e) → ϕ(x). But ϕ(gn · e) =
gn · ϕ(e) for all n. Since gn · e → x, we have gn → x. So ϕ(gn · e) → x · ϕ(e). Therefore
ϕ(x) = x · ϕ(e). �

We are now ready to prove the following Proposition. In the following, G is an abelian group.

Proposition 6.7. The centralizer C(G,G) = {ϕ : G → G | ϕg = gϕ ∀g ∈ G} of an
odometer G is isomorphic to G.

Proof. Define ψ : C(G,G) → G as ψ(ϕ) = ϕ(e) for all ϕ ∈ C(G,G). Let ϕ1, ϕ2 ∈ C(G,G).
Then

ψ(ϕ1 ◦ ϕ2) = ϕ1 ◦ ϕ2(e)

= ϕ1(ϕ2(e))

= ϕ2(e) · ϕ1(e)

= ϕ1(e) · ϕ2(e)

= ψ(ϕ1)ψ(ϕ2)

So ψ is a homomorphism. Let y ∈ G. Let ϕy(x) = x·y for all x ∈ G. Note, for g ∈ G, we have
ϕy(gx) = gϕy(x) so ϕy ∈ C(G,G). Also, ψ(ϕy) = y, so ψ is onto. Suppose ψ(ϕ1) = ψ(ϕ2).
Then ϕ1(e) = ϕ2(e). So for any x ∈ G, ϕ1(x) = x · ϕ1(e) = x · ϕ2(e) = ϕ2(x). Therefore ψ
is an isomorphism. �
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We now turn our attention to almost 1− 1 extensions of odometers.
Definition 6.8. We say (X,G) is an almost 1 − 1 extension of (Y,G) if there is a factor
map π : X → Y such that there is at least one y ∈ Y so that π−1y is singleton. Almost 1−1
extensions of odometers are also called Toeplitz Systems.

We make use of the following commutative diagram:

X
G−−−→ X

π

⏐⏐� ⏐⏐�π

Y −−−→
G

Y

Sometimes the context will deem the action of G on X or Y ambiguous, so we will use T gx
to denote the action of the group element g ∈ G on x ∈ X and Sgy to denote the action of
g on y ∈ Y . In particular, π ◦ T g = Sg ◦ π. If the context is clear, the action of g on a point
x will be denoted g · x.
If (X,G) is a minimal almost 1 − 1 extension of a minimal equicontinuous system, (Y,G),
then it is known that (Y,G) is the maximal equicontinuous factor of (X,G) ([1]). As such,
the odometer of which a Toeplitz system (X,G) is an almost 1− 1 extension is its maximal
equicontinuous factor.

We will be considering almost 1− 1 extensions of Zd-odometers. In this context, we will the
following proposition.

Proposition 6.9. The centralizer C(G) of the almost 1 − 1 extension of a Zd-odometer is
abelian.

To prove Proposition 6.9, we show that the centralizer of the almost 1 − 1 extension of an
odometer embeds into the centralizer of its maximal equicontinuous factor, which we have
already shown to be isomorphic to the odometer, which is abelian in the case of G = Zd.

Definition 6.10 ([34]). Given a dynamical system (X,G) and a metric d compatible with
the topology on X, two points x1, x2 ∈ X are called proximal if

inf
g∈G

d(g · x1, g · x2) = 0

Lemma 6.11. Let (X,G) be an almost 1− 1 extension of an odometer (G,G) via the factor
map π. Then points of X are proximal if and only if they are in the same π fiber.

Proof. Let x1, x2 ∈ X be in the same π fiber, i.e. π(x1) = π(x2). Let y ∈ G be such
that π−1y is a singleton. Since (G,G) is minimal, there exists a sequence {gn} such that
limn→∞ Sgnπx1 = y and so limn→∞ Sgnπx2 = y. Since X is compact, there is a subsequence
{T gnk} such that T gnkx1 converges. Suppose limn→∞ T gnkx1 = z. Applying π, we have

lim
n→∞

πT gnkx1 = πz

lim
n→∞

Sgnkπx1 = πz = y
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So we also have limn→∞ Sgnkπx2 = πz = y. Since π−1y is a singleton, z is unique. Now,
d(gn · x1, gn · x2) ≤ d(gn · x1, z) + d(z, gn · x2). So,

lim sup
g∈G

d(gn · x1, gn · x2) ≤ lim sup
g∈G

(d(gn · x1, z) + d(z, gn · x2))

≤ lim sup
g∈G

d(gn · x1, z) + lim sup
g∈G

d(z, gn · x2) = 0

So the points x1 and x2 are proximal.

Now suppose x1, x2 ∈ X are proximal. Assume that πx1 
= πx2, i.e. they are not in the same
π fiber. Since x1, x2 are proximal, there is a sequence {gn} ⊆ G such that limn→∞ T gnx1 =
limn→∞ T gnx2 = z. Applying π, we have limn→∞ πT gnx1 = limn→∞ πT gnx2 = πz. So
limn→∞ Sgnπx1 = limn→∞ Sgnπx2 which implies πx1, πx2 ∈ G are proximal. But G has no
proximal points, so πx1 = πx2. �

Finally, we prove that the centralizer of X embeds into the centralizer of the odometer Y .

Proposition 6.12. Let (X,G) be an almost 1−1 extension of a G−odometer (Y,G). Every
element ϕ ∈ C(X,G) determines ψϕ ∈ C(Y,G) such that the following diagram commutes:

X
ϕ−−−→ X

π

⏐⏐� ⏐⏐�π

Y −−−→
ψϕ

Y

Additionally, this relationship is an embedding, i.e. ψϕ1 = ψϕ2 ⇒ ϕ1 = ϕ2.

Proof. Let ϕ ∈ C(X,G). Let x1, x2 ∈ X be proximal. So πx1 = πx2. Since x1 and x2 are
proximal, infg∈G d(g · x1, g · x2) = 0. Thus infg∈G d(ϕ(g · x1), ϕ(g · x2)) = 0 which, by Lemma
6.11, implies that ϕ(x1), ϕ(x2) are proximal. So ϕ preserves the proximal relationship, and
so it preserves π fibers. Define ψϕ : Y → Y as ψϕ = π ◦ ϕ ◦ π−1. This map is well
defined because ϕ preserves the π fibers. Suppose ψϕ(y1) = ψϕ(y2) for y1, y2 ∈ Y . So
π ◦ϕ ◦ π−1(y1) = π ◦ϕ ◦ π−1(y2), and so ϕ ◦ π−1(y1) and ϕ ◦ π−1(y2) are in the same π fibers.
Since ϕ preserves the π fibers, π−1(y1) and π−1(y2) are in the same π fibers, and so it is clear
that y1 = y2. Therefore ψϕ is 1 − 1. Also, ψϕ is continuous, so it is a homeomorphism, i.e.
ψϕ ∈ C(Y,G).

Now suppose ψϕ1 = ψϕ2 . Let y ∈ Y be such that π−1y = {x} is a singleton. Then
ϕ1(x) = π−1(ψϕ1(y)) and ϕ2(x) = π−1(ψϕ2(y)). Since ϕi preserves π fibers, for i ∈ {1, 2},
these are singletons. In particular, ϕ1(x) = ϕ2(x). So it is clear then that g ·ϕ1(x) = g ·ϕ2(x)
for all g ∈ G, and so ϕ1(g · x) = ϕ2(g · x) for all g ∈ G. But every orbit is dense, so ϕ1 and
ϕ2 agree on a dense subset of X, and hence agree everywhere. �

Finally we prove Proposition 6.9.

Proof. We have shown in Proposition 6.12 that C(X,G) embeds into C(Y,G) and by Propo-
sition 6.7 C(Y,G) is abelian, so C(X,G) is abelian. �
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Z
d-Toeplitz Systems. In this section, we study Toeplitz systems over Zd and generalize
the construction of Bulatek and Kwiatkowski. In particular, we present a class of Toeplitz
systems over Zd with a trivial centralizer and positive entropy.

Let x ∈ ΣZ
d
. Note that the topological closure of the orbit of x, O(x) is closed and T -

invariant. So (O(x), T ) is a subshift. This is called the orbit closure of x.

Definition 6.13. The centralizer of a symbolic dynamical system is called trivial if every
element S of the centralizer is T g for some g ∈ Zd.

Let Z ⊆ Z
d be a finite index subgroup of Zd isomorphic to Zd. For x ∈ ΣZd

and σ ∈ Σ,
define

Per(x, Z, σ) = {w ∈ Zd|x(w + z) = σ ∀z ∈ Z}
And,

Per(x, Z) =
⋃
σ∈Σ

Per(x, Z, σ)

Definition 6.14. We say that x ∈ ΣZd
is a Toeplitz array if for all v ∈ Zd, there exists a

finite index subgroup Z ⊆ Zd isomorphic to Zd such that v ∈ Per(x, Z).

It can be shown that the orbit closure of a Toeplitz Array is an almost one-to-one extension
of a Zd odometer. For details, the reader is referred to Theorem 7 and Proposition 21 in [10].
In fact, almost one-to-one extensions of odometers are exactly those systems which are orbit
closures of Toeplitz Arrays. In particular, defining a Toeplitz System as the orbit closure of
a Toeplitz Array is equivalent to Definition 6.8.

We now show how Toeplitz Arrays can be constructed over an alphabet Σ borrowing ideas
from Downarowicz [16]:

Let {pt,i}∞t=0, 1 ≤ i ≤ d be d sequences of positive integers such that p0,i ≥ 2 and pt,i divides
pt+1,i for all 0 ≤ i ≤ d. Define λt,i = pt+1,i/pt,i and λ0,i = p0,i for all 1 ≤ i ≤ d and t ≥ 0.
An array of Zd is a point in our system. Any finite rectangular block consisting of letters
from our alphabet is called a finite block. For a finite block D in d dimensions, we denote
the size of D along the ith dimension as |D|i. We identify the element in the (i1, i2, . . . , id)
position as D(i1, i2, . . . , id) with the standard Cartesian coordinate system, i.e. the left most
and bottom-most entry of D is identified with D(0, 0, . . . , 0).

Specify blocks At as follows:

(1) |At|i = pt,i

(2) Some spaces in At are filled with elements from Σ and others are left unfilled. The
unfilled spaces are called holes.

(3) The block At+1 is the concatenation of λt+1,i copies of At along the i
th dimension for

all 1 ≤ i ≤ d, where some holes are filled by symbols from Σ.

(4) For every (i1, i2, . . . , id) ∈ Nd there exists a t ≥ 0 such that At(i1, i2, . . . , id) ∈ Σ and
At(pt,1 − i1, pt,2 − i2, . . . , pt,d − id) ∈ Σ.
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We obtain a Toeplitz array ω ∈ ΣZd
by continually repeating the above process. Note that

the process described will only tile the first orthant. So to tile the entire space, at each step
we shift the origin to be located in the center of our block At. Continuing this process, we
will tile the whole space.

The fourth condition assures that all holes are eventually filled. Note that if after any finite
step all holes are filled we will have a periodic array.

Essentially, in this construction we build finite blocks, each of which contains multiple copies
of the block built in the previous step. As we copy theses blocks, we fill in some the holes,
and leave some them as holes. As we continue this process forever, we will have a Toeplitz
Array covering the whole plane.

Example 6.15 (One dimensional Toeplitz array). (Due to Downarowicz [16])
We will construct a Toeplitz array over Z from the alphabet Σ = {0, 1}. Let {pt} =
{2, 4, 8, 16, . . .} and so λt = 2 for all t ≥ 0. Let A0 = 0 , where the symbol indicates a hole.
To get A1, we copy A0 twice and fill in some of the holes. Say A1 = 010 . The underline
indicates a hole that was filled at that step. In each step, we will have two holes. For this
construction, at each step we will alternately fill in the first hole with 0 and 1. Let the
limiting sequence of this process be ω. Continuing, we have

A2 = 0100010

A3 = 010001010100010

A4 = 0100010101000100010001010100010

...

ω = 0100010101000100010001010100010101000101010001000100010101000100 . . .

And so we have a Toeplitz array ω. The orbit closure of this point is a Topelitz system.

Example 6.16 (Two dimensional Toeplitz array). Again we will use the alphabet Σ = {0, 1}
and we will construct a Toeplitz array over Z2. Let {pt,1} = {pt,2} = {2, 4, 8, 16, . . .}. Then
λt,1 = λt,2 = 2 for all t ≥ 0.

Let

0
1 1

A0 =

0
1
0
1

1
1

1

0
1
0
1

1
0
1

A1 =
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0
1
0
1

1
1

1

0
1
0
1

1
0
1

0
1
0
1

1
1

1

0

0
1
0
1

1
0
1

0 0
1
0
1

1

1
1

1

0
1
0
1

1
0
1

0
1
0
1

1
1

1

0
1
0
1

1
0
1

1
A2 =

The black squares indicate where the holes are. Continuing this process, we will have a
coloring of the whole plane, which will be a Toeplitz array, say ω.

Definition 6.17. We call subblocks of At+1 which coincide with indices of the location of
concatenated At blocks t-blocks.

We note that ω consists of the concatenation of At blocks in all directions for any t, where
all t-blocks agree in all locations except for where the holes were. In Example 6.16, the thick
lines in A1 indicate the 0-blocks, and the thick lines in A2 indicate the 1-blocks.

We introduce a condition on constructing Toeplitz arrays which will give rise to Toeplitz
Systems with a trivial centralizer.

Definition 6.18. We say a Toeplitz Array satisfies the condition (∗) if:
• Every t-block in At+1 is composed of At or At with all holes filled

• The perimeter of At+1 is composed of t-blocks which are all filled in

Let e1, e2, . . . , ed be the generators of Z
d. For 1 ≤ i ≤ d, let Ti denote a shift by the vector

ei. In this context, the shift action on the system can be considered d independent shift
actions, i.e. T g = T (g1,g2,...,gd) = T g1

1 × T g2
2 × . . .× T gd

d .

Definition 6.19. Given a finite alphabet Σ, a patch is a pair (P,L), where P ⊆ Z
d and

L : P → Σ is a labeling of P . For the purposes of this paper, we will only consider rectangular
patches which can be defined by d vectors parallel to the coordinate axes.

Given a patch (P,L), we denote the the coordinate closest to the origin in Cartesian space
by P [0]. Any other location in the patch is denoted by P [i] where i ∈ Zd is a vector pointing
to that location, as referenced from P [0]. A square block within P is denoted by P [i− l, i+k]
where k, l ∈ Z and is the (hyper)cube in P located between P [i − l1̄] and P [i + k1̄], where
1̄ = (1, 1, . . . , 1).

Theorem 6.20. Let ω be a Toeplitz array satisfying the condition (∗). Then the centralizer

C(T ) of (O(ω), T ) is trivial.

Proof. Let (G, T1×T2× . . .×Td) be the maximal equicontinuous factor of (O(ω), T ). Denote

by π : (O(ω), T )→ (G, T1× T2× . . .× Td) the almost one-to-one factor map. Let S ∈ C(T ).
By Proposition 6.12, this determines an element S ′ ∈ C(G, T1 × T2 × . . . × Td) which acts
as a translation by some element h ∈ G (see Lemma 6.6). By a result of Hedlund [19], we
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note S is determined by a block code f of window size k ∈ N. In particular, if u ∈ O(ω),
and z = S(u), then

z[i] = f(u[i− k, i+ k]) for all i ∈ Zd

In particular, the automorphism determines what to put in a specific location by looking
at a block around that location in the preimage. By choosing appropriate j ∈ Zd, we can
define S̃ = S ◦ T j which would require S̃ to only look forward. Specifically, for u ∈ O(ω),
and z = S̃(u) we have

(1) z[i] = f(u[i, i+ k]) for all i ∈ Zd

for some k ∈ N. As such, we can assume S is defined as a block map as in (1).
Note that G is a product odometer, so h = (h1, h2, . . . , hd) where hi =

∑∞
t=0 ht,ipt−1,i for 1 ≤

i ≤ d with 0 ≤ ht,i ≤ λt,i−1. Each hi is an element of the one dimensional odometer occurring

in the ith coordinate of h. Let mt,i =
∑t

j=0 hj,ipj−1,i and mt = (mt,1,mt,2, . . . ,mt,d) ∈ Zd.

Let Qt ⊆ ΣZd
be the clopen cylinder set with 0’s located in a t-dimensional hybercube about

the origin. Then h ∈ T
mt,1

1 T
mt,2

2 . . . T
mt,d

d Qt.

We claim that for all 1 ≤ i ≤ d either mt,i ≤ k or mt,i ≥ pt,i − k − 1.
Let x ∈ O(ω) and y = S(x). Suppose that x has a (t + 1)-block appearing at a location
x[i]. Then by the construction of Toeplitz subshifts and almost one-to-one extensions, y
necessarily has a (t+ 1)-block at the location y[i−mt].

Let A denote any (t + 1)-block of x. Note that A = x[i, i + k] for some i ∈ Zd and k ∈ N.
This block looks like At+1, which in turn is the concatenation of At blocks. In particular,
all t-blocks are the same, except they may disagree where the holes are located. Specifically,
suppose C is a t-block and C[i] is the location of the hole in C that is closest to the bottom
left corner. In general, we choose the hole whose location vector i has the minimum length.
If there is more than one hole with the same minimum length location vector, then we just
choose one at random. Note C[0, i − 1] is completely determined, and is the same in those
locations as every other t-block in x. The only place where t-blocks may potentially disagree
is at the holes.

Let B be the (t + 1)-block in y starting at location y[i −mt]. Suppose the first hole in B
occurs at B[j] for some j ∈ Zd. This hole occurs at A[j +mt] in A. In order to determine
what is at this location in B, S looks at a hypercube of side length k around A[j]. In view of
Equation (1), B[j] is determined by A[j, j + k]. We note that if mt,i > k for any 1 ≤ i ≤ d,
then this window would not overlap the hole at A[j +mt]. And since this hole was the hole
closest to the bottom left corner, everything in the window A[j, j + k] is not a hole. And
so B[j] is uniquely determined, and is not a hole. Since A was an arbitrary (t + 1)-block,
every (t + 1)-block will have the symbol B[j] located the relative position j. In particular,
A[j +mt] = B[j].

We can continue to the next hole in A on the same horizontal level, and the same argument
would show that this hole is completely determined. Continuing this argument for every
hole, we see that the entire block is completely filled in, and so then y is periodic, which is a
contradiction. In general, in d dimensions, we move along hyperplanes in d − 1 dimensions
which are parallel to the coordinate hyperplanes. We fill in all the holes on a constant
hyperplane, and then increase levels by one, until we fill in all the holes.
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On the other hand, suppose that B is a (t+1)-block in y starting at location y[i+mt]. Note
that S−1 is also determined by a block map. If S is looking forward, then taking a larger k if
needed one can show that S−1 is a “past looking” map determined by z[i] = g([u[i− k, i]]).
Changing the role of x and y and using S−1 for S and using the argument similar to the one
above, we can show that mt < pt − k.

The first case is demonstrated for the two dimensional case in Figure 10. Here, Ȧt indicates
At blocks with all holes filled and the solid black and red squares indicate a hole in A and
B, respectively.

Figure 10

Now note that h ∈ T
mt,1

1 T
mt,2

2 . . . T
mt,d

d Qt for all t. And since |mt,i| ≤ k mod pt,i, we have
that h is in the orbit of 0. In particular,

h ∈
⋂
t

T h1
1 T h2

2 . . . T hd
d (0) = Tm{0}

where ||m||∞ = max |mt,i| ≤ k. So, h = S ′(0) = T h(0), i.e. S ′ and T agree on one point.
Furthermore, S ′ agrees with the action of h ∈ Zd on the entire orbit of 0, which is dense.
Therefore S ′ is a power of the shift, i.e. S ′ = T h.

Let α be in the orbit of ω in (O(ω), T ), i.e. α = T gω for some g ∈ Zd. Note

πS(α) = πS(T gω)

= S ′π(T gω)

= S ′T g(0)

= T hT g(0)

= πT hT gω = πT h(α)

So S(α) and T h(α) are in the same π fiber. Since α is in the orbit of ω, it has a unique
preimage under π. Therefore S(α) = T h(α). And so S and T h agree on the entire orbit of
ω, which is dense. So S = T h. �
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7. Positive Entropy Toeplitz Subshift

We now construct an explicit example of a two dimensional Toeplitz subshift which has
positive entropy. This example is constructed so that it obeys the (∗) condition, thus ensuring
that it has a trivial centralizer.

Let h > 0 and choose l0 such that log(l0 − 1) ≤ h ≤ log(l0). For i ≥ 0, let εi > 0 and {εi}
be such that

∑∞
i=0 εi <

h
2
.

We note that for any l and any ε > 0, there exists n ∈ N sufficiently large such that

(2)
log

(
ln

2
)

(n+ 2)2
≥ log(l)− ε

since
(

n
n+2

)2 → 1.

Let q0 be chosen so that

log(l0
q20)

(q0 + 2)2
≥ log(l0)− ε0

2

Also require q20 ≥ l0. Define l1 = l
q20
0 . We notice that there are l

q20
0 square blocks of side length

q0 over the alphabet {0, 1, . . . , l0− 1}. We enumerate these blocks as B(0)
i for 0 ≤ i ≤ l1− 1.

Furthermore, we require that B
(0)
0 and B

(0)
1 contain every letter from the alphabet. Let C

(0)
i

be the square block of side length q0 + 2 with the block B
(0)
i surrounded by a 0 in the top

left corner, a 1 in the bottom right corner, and 0’s below the main diagonal and 1’s above

it, as in the diagram below. We will denote this as C
(0)
i = 0B

(0)
i 1 for 0 ≤ i ≤ l1 − 1.

0

...

0
0

· · · 0 1
1

...

11 · · ·
B

(0)
iC

(0)
i =

For k ≥ 1, define lk = l
q2k−1

k−1 and let qk be such that

(3)
log(lk

q2k)

(qk + 2)2
≥ log(lk)− εk

2

Additionally, require that q2k ≥ lk. Let B
(k)
i be all the square blocks of side length qk over

the alphabet {0, 1, . . . , lk− 1} for 0 ≤ i ≤ lk+1− 1. Require that B(k)
0 and B

(k)
1 contain every

letter from the alphabet. Let C
(k)
i = 0B

(k)
i 1 for 0 ≤ i ≤ lk+1 − 1. Define λk = qk + 2 and

pk = λ1λ2 . . . λk.

Consider the following operation on finite blocks: let {A1, A2, . . . , An} be square blocks of
the same side length, A over some alphabet. Let B be a square block whose side length is
at least

√
n over an alphabet containing {1, 2, . . . , n}. We define the block

C = {A1, A2, . . . , An} ∗B
as C[i, j] = AB[i.j]. In particular, C will be a square block of side length |B| · A.
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We are constructing a tiling of Z2 using k-blocks as building blocks. Additionally, we must
construct these blocks so that they satisfy the (∗) condition. As such we define k-blocks in
the following way: Let A

(0)
i = C

(0)
i and

A
(k)
i = {A(k−1)

0 , A
(k−1)
1 , . . . , A

(k−1)
lk−1 } ∗ C

(k)
i

We note that since C
(0)
0 and C

(0)
1 have every letter of the alphabet {0, 1, . . . , l0 − 1}, the

blocks A
(1)
0 and A

(0)
1 will have every 0−block as a subblock. Similarly, C(1)

0 and C
(1)
1 contain

every letter in {0, 1, . . . , l1 − 1} and so the blocks A(2)
0 and A

(2)
1 will contain every 1− block

as a subblock. In general, we note that each block A
(k)
i for i = 0, 1 has every (k − 1)−block

as a subblock.

We let

0

...

0
0

· · · 0 1
1

...

11 · · ·
A0 =

where the side length of the square box A0 is q0 + 2, and the dash in the center square
indicates a square of side length q0 consisting of all holes.

Define

A
(k)
0

A
(k)
0

...

A
(k)
0

A
(k)
0

A
(k)
0

Ak

...

Ak

A
(k)
1

· · ·

· · ·

. . .

· · ·

· · ·

A
(k)
0

Ak

...

Ak

A
(k)
1

A
(k)
1

A
(k)
1

...

A
(k)
1

A
(k)
1

Ak+1 =

A
(k)
0

A
(k)
0

...

A
(k)
0

A
(k)
0

A
(k)
0

· · · A
(k)
0 A

(k)
1

A
(k)
1

...

A
(k)
1

A
(k)
1A

(k)
1

· · · A
(k)
1

where there is a square block consisting of q2k copies of Ak surrounded by 4qk + 4 copies of

A
(k)
i for i = 0 or 1 on each side. Notice that A

(k)
0 and A

(k)
1 have no holes, so all the holes are

contained in the middle block of Ak blocks.

Let ω be the limiting array from the above process. We note here that ω satisfies the (∗)
condition.

Proposition 7.1. The Toeplitz system (O(ω), T ) has positive entropy.

Proof. Let hω be the entropy of (O(ω), T ) and let Θ(n) be the number of square blocks of

side length n appearing in ω. We note that hω = limn→∞
log(Θ(n))

n2 = limk→∞
log(Θ(pk))

p2k
, by

switching to a subsequence.

There are lk+1 many k−blocks. We note that every Ak block contains every (k − 1)− block
as a subblock. This is because the blocks C

(k)
i for i = 0 or i = 1 contain every letter of

the alphabet in them. This means that as we do the shuffling process described above, the



32

blocks A
(k)
i for i = 0 or i = 1 contain every single block A

(k−1)
i for 0 ≤ i ≤ lk− 1. The blocks

A
(k)
i for i = 0 or i = 1 are exactly those which occur in the k−blocks, and so they contain
every (k − 1)−block as a subblock. Furthermore, since k−blocks are squares of side length
pk, there are at least as many blocks of side length pk occurring in ω as there are k−blocks.
Specifically, square blocks of length pk can occur at any position within ω, while k−blocks
only occur at specific positions. Hence we have

(4) Θ(pk) ≥ lk+1

So we have

(5) hω ≥ lim sup
k→∞

log(lk+1)

p2k

By (3) we have that
log(lk+1)

λ2
k

≥ log(lk)− εk
2

It then follows, and by (2), that

log(lk+1)

p2k
≥ λ2

k(log(lk)− εk
2
)

p2k
=
log(lk)− εk

2

p2k−1
≥ log(lk)

p2k−1
− εk

Continuing, we have

log(lk+1)

p2k
≥ h−

k∑
i=0

εi

Taking the limit as k →∞, from (5), we have hω ≥ h/2 > 0.

It is a basic fact that every Toeplitz system is minimal, so this system is minimal. It is
either finite or uncountable, and since it has positive entropy, it cannot be finite. So this is
an infinite minimal Toeplitz system.

�

8. Amenable Groups

Groups in mathematics can have a number of different properties. These are called the
algebraic property of the group. For example, a group can be finite, meaning it only has a
finite number of members. Some other examples include being abelian, which, from Definition
5.3, means that the order of the multiplication within the group does not matter. These
are two properties that make groups very easy to work with. Specifically, if we know that
a group is abelian, we do not need to keep track of the order in which we are multiplying
group elements. This property makes working with them far more desirable.

Another desirable property of groups is known as amenability. Intuitively speaking, a group
is amenable if averages can be taken within that group. The meaning of this is a little vague,
so we will formalize it shortly. In order to motivate the definition of amenability, we will
present a classic paradox, known as the Banach-Tarski paradox, first discovered in 1924 [2].
This paradox states that a ball with a finite volume, say V can be torn apart into pieces,
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and those pieces can be rearranged to give two identical copies of the original ball, as shown
in Figure 11. While this sounds like an outlandish claim, it can be proven rigorously. Here
we will sketch the key part of the proof:

Figure 11. The Banach-Tarski Paradox

We start with the free group on two generators. The free group on two generators, denoted
by F2 is the set of all finite combinations of two symbols (i.e. generators), say a and b as
well as a−1 and b−1 such that a−1 never occurs next to a, and b−1 never occurs next to b. In
particular, F2 is the group on two generators with no relations.

Example 8.1. The words a, ababab, aba−1b−1aab, b−1 are in F2. The word abb−1a can be
reduced to aa, so to avoid redundancy we do not count it in F2.

Define S(a) to be every word that starts with a, S(b) to be every word that starts with b,
and S(a−1) and S(b−1) are defined similarly. So, S(a) = {a, aa, ab, ab−1, aab, aab−1, aba, . . .}.
As a technical point, we also need to include the empty word, denoted ε. This is just a word
that has no letters in it. In particular, ε = aa−1 = a−1a = bb−1 = b−1b. We notice now that
we have completely accounted for every word in F2. That is,

F2 = {ε} ∪ S(a) ∪ S(b) ∪ S(a−1) ∪ S(b−1)

Now, take S(a−1) and add the letter a to the beginning of each word. Denote this by aS(a−1).
This will give us every word that does not begin with a. And so we also have

F2 = aS(a−1) ∪ S(a)

Similarly, we have
F2 = bS(b−1) ∪ S(b)

This step is the most important part of the proof. Essentially we have broken up the group
F2 first into four pieces all having the same size (as well as {ε} which we will say has no size).
But then we broke it in a different way into two pieces which each have the same size as the
pieces from the first division. Intuitively, we can think of the ball as being F2. First we will
break it into four sections, each of which has many small pieces contained in it, and notice
that we need only two of these sections to reconstruct the original ball. And since we have
four, we can make two balls, each the same size as the original. It takes some additional
rigor to show why we can think of the ball as being analogous to F2, but for the purposes of
this we have completed the crucial step.

Figure 12 shows the Cayley graph of F2. This is a graphical representation of the group F2.
Starting in the middle, at the identity element, if we want an a we go to right, we go up for a



34

Figure 12. The Cayley Graph of F2

b, left for a−1 and down for b−1. After this first step, there are now three choices depending
on the first choice. For example, if we started by going right, then we can’t immediately
follow that with left, as this would correspond to aa−1 which just takes us back to the start.
So if we started by going to the right, then went up, and then left, this would correspond
to aba−1. Now, we note that the set S(a) is the main branch of the graph off to the right,
as this represents all the words that start with a. Similarly, S(b) is the branch going up,
S(a−1) is the branch going left and S(b−1) is the branch going down. So the group F2 is
split into these four branches in the Cayley graph, and we notice that these branches don’t
overlap each other. We note the self symmetry of the graph. For example, the left branch,
which is S(a−1), is a rescaled version of the upward, downward, and left facing branches. In
particular, if we shift the left branch over to the right and scale it up, we will exactly overlap
the branches corresponding to S(b), S(b−1), and S(a−1). This shifting is exactly the same
as adding an a to the beginning of every word in the original branch. So we have just shown
graphically why aS(a−1) is the same as S(b) ∪ S(a−1) ∪ S(b−1).

This is called a paradoxical decomposition and it really challenges our intuitive understanding
of the physical world. Certainly this kind of decomposition is not actually physically possible
with a real ball, but there is nothing in mathematics that prohibits it. Some would argue
that occurrences like this lie at the heart of the beauty of mathematics. However, this
sometimes makes even mathematicians uncomfortable, so the concept of amenability was
developed. The main reason this paradoxical decomposition was able to occur is because F2

is not amenable.

In what follows, we will provide some results about amenability as well as some different but
equivalent definitions. The study of amenability is a rich field of mathematics, and what we
have here only scratches the surface. A good survey of amenability can be found in Paterson
[31].

Definitions of Amenability. There are several equivalent definitions for amenability. Here
we will provide two, and show that they are in fact equivalent. The concept of amenability
is complicated, so first, we will provide some basic definitions and examples. In what follows
we will always assume G is a discrete group. We will denote by P(G) the power set of G;
that is, the set of all subsets of G.
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Definition 8.2 (Measure). A measure on a group G is a function μ : P(G)→ R such that
∀X ∈ P(G) the following hold:

(1) μ(X) ≥ 0
(2) μ(∅) = 0
(3) For a countable collection of pairwise disjoint subsets {Xi}∞i=0 ⊆ P(G), we have

μ

( ∞⋃
i=0

Xi

)
=

∞∑
i=0

μ(Xi)

Example 8.3. G = Z. Define μ(X) to be the number of elements of X, for any X ⊆ P(Z).
So μ({0, 1, 2, 3}) = 4, and μ({9, 14, 2017}) = 3. Then μ is a measure on Z.

We now introduce some additional properties that a measure can attain.

Definition 8.4. Let G be a group, and μ a measure on G.

• μ is called a probability measure if μ(G) = 1 and for any X ⊆ G, 0 ≤ μ(X) ≤ 1.
• μ is called finitely additive if for any finite collection of disjoint subsets of G, say
{Xi}ni=0 we have

μ

(
n⋃

i=0

Xi

)
=

n∑
i=0

μ(Xi)

Example 8.5. Let G = {0, 1, 2}. Define μ as follows:
μ(∅) = 0

μ({0}) = μ({1}) = μ({2}) = 1/3
μ({0, 1}) = μ({0, 2}) = μ({1, 2}) = 2/3

μ({0, 1, 2}) = 1
Here we note that μ is both a probability measure and finitely additive.

We now introduce the concept of a coset.

Definition 8.6. Let G be a group, H a subgroup and g be a group element not in H. The
the left coset of H, denoted gH is

gH = {gh | h ∈ H}
Example 8.7. Let G = Z and H = 2Z = {. . . ,−4,−2, 0, 2, 4, . . .}. Let g = 1. Then
gH = 1 + 2Z = {. . . ,−3,−1, 1, 3, 5, . . .} is the left coset.

We now introduce one more property a measure can have.

Definition 8.8. Let G be a group and μ a measure on G. We say μ is left-invariant if for
all subgroups H ⊆ G, and every g ∈ G, we have

μ(gH) = μ(H)

We are now ready to define amenability.
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Definition 8.9. Let G be a group. We say G is amenable if it admits a left-invariant finitely
additive probability measure.

Some basic results are that every finite group is amenable, and every abelian group is
amenable. However, the free group is not amenable.

Proposition 8.10. F2 is not amenable.

Proof. Suppose F2 is amenable, i.e. there exists a left-invariant finitely additive probability
measure μ on F2. As above, we note that

F2 = {ε} ∪ S(a) ∪ S(b) ∪ S(a−1) ∪ S(b−1)

And also

F2 = aS(a−1) ∪ S(a)

Applying μ, and noting that μ({ε}) = 0, we have
μ(F2) = μ(S(a)) + μ(S(b)) + μ(S(a−1)) + μ(S(b−1))

On the other hand, we have

μ(F2) = μ(aS(a−1)) + μ(S(a))

But μ(aS(a−1)) = μ(S(a−1) since μ is left-invariant. So we have

μ(S(a)) + μ(S(b)) + μ(S(a−1)) + μ(S(b−1)) = μ(S(a−1)) + μ(S(a))

∴ μ(S(b)) + μ(S(b−1)) = 0

which is a contradiction. So no such measure can exist, therefore F2 is not amenable. �
Example 8.11. The measure defined in Example 8.5 is left-invariant, finitely additive and is a
probability measure, and so the group G = {0, 1, 2} with the addition operation is amenable.

Amenability is a nice property for groups which makes them easy to work with. Some
other nice properties of groups can guarantee amenability. For example, all finite groups are
amenable.

Proposition 8.12. All finite groups are amenable.

Proof. Let G be a finite group and |G| = k. For any X ⊆ G, define

μ(X) =
|X|
|G|

We note that this is indeed a probability measure since 0 ≤ μ(X) ≤ 1 for all X ⊆ G. Let
{Xi}ni=0 be a family of disjoint subsets of G. Then∣∣∣∣∣

n⋃
i=0

Xi

∣∣∣∣∣ =
n∑

i=0

|Xi|

and finite additivity immediately follows. Let X ⊆ G be a subgroup and g ∈ G. Then
|gX| = |X| and so this measure is left-invariant. Hence G admits a left-invariant finitely
additive probability measure, and so it is abelian. �
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Note the measure constructed in the proof of Proposition 8.12 is exactly the measure used
in Example 8.5.

We now provide another definition of amenability which is equivalent to the first definition.
This definition is due to Følner in 1955 in [17].

Definition 8.13 (Følner Sequence). Let G be a countable group. A Følner Sequence is a
sequence of subsets {Fi} ⊆ G such that for all x ∈ G, there exists i such that for all j > i
x ∈ Fj and

lim
i→∞

|gFi�Fi|
|Fi| = 0

for all g ∈ G.

Here, gFi�Fi is the symmetric difference between gFi and Fi, i.e.

gFi�Fi = (gFi − Fi) ∪ (Fi − gFi)

Intuitively, this definition tells us when a group acting on itself doesn’t move the subsets
around “too much”. This is far from rigorous, but gives some intuition as to why this
definition is equivalent to the invariant measure definition. Essentially, in this definition,
we have sets that, when disturbed on the left by a group element remain similar. In the
invariant measures definition, this disturbance doesn’t change the measure of those sets, so
there is kind of a philosophical connection between these two definitions. Of course, we will
prove this in full mathematical rigor.

Proposition 8.14. A group G is amenable if and only if it admits a Følner Sequence.

Example 8.15. We will show, using a Følner Sequence, that Z is amenable.

Let X = Z. Let Fi = [−i, i] be closed intervals. Then for g ∈ Z, gFi = [−i+ g, i+ g] and so
gFi�Fi = [−i,−i+ g] ∪ [i, i+ g]. So |gFi�Fi| = 2g and |Fi| = 2i+ 1. So,

lim
i→∞

|gFi�Fi|
|Fi| = lim

i→∞
2g

2i+ 1

= 0 ∀ g ∈ G

Therefore Z admits a Følner Sequence, and so it is amenable.

Ultrafilters and Ultralimits. In order to prove this equivalence between these two defi-
nitions of amenability, we need to develop the idea of ultrafilters and ultralimits. Ultrafilters
give us an idea of which subsets of a set are, in a sense, large, and which ones are small.
And using this notion of ultrafilters, we are able to expand the notion of a usual limit, to an
ultralimit.

Definition 8.16. Let X be a set, and F be a nonempty collection of subsets of X. We say
F is a filter if

• ∅ /∈ F and X ∈ F .
• If A ∈ F and B ∈ F , then A ∩B ∈ F .
• If A ∈ F and A ⊆ B, then B ∈ F .

If we also have ∀A ⊆ X, A ∈ F or X − A ∈ F , then we call F an ultrafilter.
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Intuitively speaking, a set is in the filter if it is ”big”, and it is not if it is not ”big”.

Example 8.17. Consider the filter on N, known as the cofinite filter defined as

F = {A ⊆ N | N− A is finite.}
We can check all the above conditions to confirm that this is indeed a filter.

Example 8.18. The easiest construction, and, in fact, the only explicit construction of an
ultrafilter is the principal ultrafilter. Let X be an infinite set and let x ∈ X. Define

F = {A ⊆ X | x ∈ A}

We now prove a basic fact about filters.

Lemma 8.19. If F is a filter then every finite subfamily of F has nonempty intersection.
This is called the finite intersection property.

Proof. Let F be a filter on a set X. We note that any finite intersection of members of F
must also be a member of F and so it cannot be empty. �

We now show how ultrafilters can be used to expand our notion of limits. In particular, we
use ultrafilters to define ultralimits.

Definition 8.20 (Convergence of an ultrafilter in a topological space). Let Y be a compact
topological space and ω an ultrafilter on Y . We say ω converges to y ∈ Y if for every open
set U containing y, U ∈ ω.

Example 8.21. Let Y = R with the usual topology. Let ω be the principal ultrafilter defined
by ω = {A ⊆ R | 0 ∈ A}. Then ω → 0.

In the following proposition, we use an ultrafilter in one space to construct an ultrafilter in
another space, connected to the first by a function. This will allow us to define a general
ultralimit.

Proposition 8.22. Let ω be an ultrafilter on an infinite set X , Y be a topological space
and f : X → Y be a function. Then ωf = {A ⊆ Y | f−1(A) ∈ ω} is an ultrafilter on Y .

Proof. Note f−1(Y ) = X ∈ ω ⇒ Y ∈ ωf .

Let A,B ∈ ωf . Then f−1(A) ∈ ω and f−1(B) ∈ ω. So f−1(A) ∩ f−1(B) = f−1(A ∩ B) ∈
ωf ⇒ A ∩B ∈ ωf .

Let A ∈ ωf and A ⊆ B. Then f−1(A) ∈ ω. Also, f−1(A) ⊆ f−1(B) ⇒ f−1(B) ∈ ω ⇒ B ∈
ωf .

Finally, let A ∈ Y and suppose A /∈ ωf . Then f−1(A) /∈ ω ⇒ X − f−1(A) ∈ ω, since ω is an
ultrafilter.

Note f−1(Y − A) = X − f−1(A) ∈ ω ⇒ Y − A ∈ ωf . And so ωf is an ultrafilter on Y . �

Now we can introduce ultralimits:
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Definition 8.23 (Ultralimit). Let X be an infinite set, ω an ultrafilter on X, Y a topological
space and f : X → Y a function. The the ultralimit of f with respect to ω is

lim
ω

f = y ∈ Y

if ωf converges to y.

In Example 8.21, we see the importance of non-principal ultrafilters. Specifically, the ultra-
limit taken over any principal ultrafilter will always converge to the same point. Because of
this, we will show the existence of a non-principal ultrafilter. The proof is not constructive,
meaning that an explicit non-principal ultrafilter is not constructed. Rather we show that
one must exist, but we do not know what it actually looks like.

In order to prove the existence of a non-principal ultrafilter, we first show that ultrafilters
are maximal filters.

Definition 8.24. Let F be a filter on a set X. We say that F is maximal if for any other
filter F ′ of X, F ′ ⊂ F .

We will show that maximal filters are exactly the ultrafilters.

Proposition 8.25. Let F be a filter on a set X. Then F is an ultrafilter if and only if it is
maximal.

Proof. (⇒) Suppose F is an ultrafilter on X which is not maximal. Then F ⊂ F ′ where
F ′ is some filter on X. Note F ′ − F contains some set B ∈ F ′ with B /∈ F . Then,
since F is an ultrafilter, X − B ∈ F . But since F ⊂ F ′, we have X − B ∈ F ′. And so
B ∩ (X − B) ∈ F ′ ⇒ ∅ ∈ F ′. This is a contradiction, so F is maximal.

(⇐) Suppose F is a maximal filter on X and there exists A ⊆ X such that A /∈ F . Since
F is maximal, F ∪ {A} is not a filter, therefore, by Lemma 8.19 it does not have the finite
intersection property. So ∃B ∈ F such that B ∩A = ∅ so B ⊆ (X −A)⇒ (X −A) ∈ F . So
F is an ultrafilter.

�

We will now show that non-principal ultrafilters exist. In doing so, we will make use of Zorn’s
Lemma. Zorn’s Lemma was actually first described in 1922 by Casimir Kuratowski [26] and
then independently described by Max Zorn [35] in 1935. Curiously, it is named after Zorn.

Lemma 8.26 (Zorn’s Lemma). Let X be a partially ordered set such that every non-empty
chain has an upper bound. Then X admits a maximal element.

This lemma is equivalent to the once controversial Axiom of Choice, but proof of that
equivalence, and a proof of the lemma are beyond the scope of this paper.

Proposition 8.27. Non-principal ultrafilters exist.

To prove this, we will make use of free filters.

Definition 8.28. A filter F is free if
⋂

A∈F A = ∅.
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We note that a principal ultrafilter is not free, so in proving the existence of non-principal
ultrafilters, it suffices to prove the existence of a free ultrafilter. We also note that the cofinite
filter from Example 8.17 is free, so every infinite set has a free filter.

Proof. Proposition 8.27.
Let F0 be a free filter on an infinite set X and let S be the set of free filters on X containing
F), i.e. S = {F | F0 ⊆ F and F is a free filter}. We note S is nonempty because F ∈ S.
We now partially order S by set inclusion. Let C be a chain in S such that ∀Fi,Fj ∈ C
either Fi ⊆ Fj or Fj ⊆ Fi. Let Γ =

⋃
F∈C F .

Lemma 8.29. Γ ∈ S.

To prove this lemma, we need to show that Γ is a free filter on X containing F0. First we
show that Γ is a filter:

Suppose ∅ ∈ Γ. Since Γ = ⋃
F∈C F , this implies that ∅ ∈ F , for some F ∈ C which is a

contradiction.

Let A,B ∈ Γ. Then A ∈ Fi and B ∈ Fj for some i, j. Note A ∩ B ∈ Fi ∪ Fj and so
A ∩B ∈ F for some F ∈ C ⇒ A ∩ B ∈ Γ.
Let A ∈ Γ and A ⊆ B. So A ∈ F for some F ∈ C which implies B ∈ F and so B ∈ Γ.
Hence we have that Γ is a filter on X.

Now suppose Γ is not free, i.e. ∃m ∈ X such that

m ∈
⋂
A∈Γ

A

Then ∀A ∈ Γ, m ∈ A which implies that for some F ∈ C, m ∈ ⋂
A∈F A. This contradicts

the fact that F is free. So we have proved our claim. In particular, we have that Γ ∈ S,
thus proving Lemma 8.29.

Clearly Γ is an upper bound for C. So any chain in S has an upper bound. Invoking Zorn’s
Lemma we know that S admits a maximal element, F ′. This is a free maximal filter, i.e. it
is a non-principal ultrafilter. �
Corollary 8.30. As a corollary to Proposition 8.27 we note that any non-principal ultrafilter
on an infinite set contains the cofinite filter.

Now, (finally), we can prove the equivalence between the two definitions of amenability.

Proof. Proposition 8.14.
(⇐) Let Fi ⊆ G be such that

lim
i→∞

|gFi�Fi|
|Fi| = 0

for all g ∈ G.

For A ⊆ G define

μ(A) = lim
i→∞

|A ∩ Fi|
|Fi|
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This limit may not exist, so we take a non-principal ultrafilter F on N. We note that F
contains the cofinite filter. So, we have

μ(A) = lim
F
|A ∩ Fi|
|Fi|

Note that 0 ≤ μ(A) ≤ 1 for all A ⊆ G.

Now

μ(G) = lim
F
|G ∩ Fi|
|Fi|

= lim
F
|Fi|
|Fi| = 1

as desired.

Let A,B ⊆ G be disjoint. Then

μ(A ∪ B) = lim
F
|(A ∪B) ∩ F1|

|Fi|
= lim

F
|(A ∩ Fi) ∪ (B ∩ F1)|

|Fi|
= lim

F

( |A ∩ Fi|
|Fi| +

|B ∩ Fi|
|Fi|

)
= μ(A) + μ(B)

and so μ is finitely additive.

Now, let A ⊆ G and g ∈ G. Then∣∣∣∣ |gA ∩ Fi|
|Fi| − |A ∩ Fi|

|Fi|
∣∣∣∣ =

∣∣∣∣ |A ∩ g−1Fi| − |A ∩ Fi|
|Fi|

∣∣∣∣
≤

∣∣∣∣ |A ∩ (g−1Fi�Fi)|
|Fi|

∣∣∣∣→ 0

So μ(gA)− μ(A) = 0 and so μ is left-invariant. Therefore G is amenable.

�

Other Characterizations of Amenability. Sometimes, the definitions above are some-
what cumbersome to work with. In practice, it is not always easy or possible to find an
explicit invariant measure or Følner sequence on a group. Accordingly, mathematicians have
developed other constructs through which we can check the amenability of a group. One we
will present here, known as Grigorchuk’s Cogrowth Criteria allows us to check amenability
of groups essentially by counting how many words are allowable in the group. This criteria
was first described by Grigorchuk [18] in 1977, and was further described by Joel Cohen [9].

We start with a group G with a presentation 〈x1, x2, . . . , xt | r1, r2, . . .〉. That is, G is gen-
erated by x1, x2, . . . , xt subject to the relations r1, r2, . . .. For example, the group Z

2 can be
presented as Z2 = 〈e1, e2 | e1e2 = e2e1〉, where e1 and e2 are the standard coordinate vectors.



42

Let F be the free group on the generators {x1, x2, . . . , xt} and N be the normal subgroup of
F generated by r1, r2, . . .. Then G = F/N .

A reduced word is a word in which a symbol is not immediately followed by its inverse. If
this were the case, then we can reduce these two symbols to the identity. Let En = {w ∈
F | |w| = n}; that is, En is the number of reduced words in F of length n. Let Nn = N ∩En.
So Nn is the set of reduced words of length n in G which are equal to the identity. Let
γn = |Nn|. In particular, γn is the number of reduced words of length n which are equal to
the identity. Let γn =

∑n
i=0 γi which is the number of reduced words of length at most n

equal to the identity.

Theorem 8.31 (Grigorchuk’s Cogrowth Criteria). Let

γ = lim
n→∞

(γn)
1/n

Then γ = 1 if and only if G is the free group, and γ = 2t− 1 if and only if G is amenable.

A proof of this is beyond the scope of this report, but we will provide examples to demonstrate
the use of this criterion. However, we will prove that this limit always exists.

Lemma 8.32. Let γn be as defined above. Then γnγm ≤ γn+m+2 for all n,m ≥ 0.

Proof. Let α ∈ Nm, β ∈ Nn. Suppose α ends with the letter v0 ∈ {x1, x2, . . . , xt} and β begins
with u0 and ends with u1. Pick any letter u ∈ E1−{v−10 , u−10 , u1}. Then αuβu−1 ∈ Nm+n+2.
So, Nn ×Nm ⊆ Nm+n+2 ⇒ γnγm ≤ γm+n+2. �

We now prove something very closely related to the existence of γ. Note that in the following
lemma, we are proving the convergence of the limit of (γn)

1/n as opposed to the convergence
of the limit of (γn)

1/n. The equivalence of this to the existence of γ is then proven in
Proposition 8.34.

Lemma 8.33. The limit limn→∞(γn)1/n exists when taken over n such that γn 
= 0.

Proof. Let an = log(γn−2) ≥ 0. So an + am ≤ an+m, by Lemma 8.32. Let bn = −an. Then
bn+m ≤ bn + bm. So, {bn} is a subadditive sequence and hence limn→∞ bn

n
exists. Therefore,

limn→∞ an
n
exists.

Note

lim
n→∞

an
n
= lim

n→∞
log(γn−2)

n

= lim
n→∞

log(γn−2)1/n = lim
n→∞

(γn)
1/n

So limn→∞(γn)1/n exists. �

Proposition 8.34. The limit limn→∞(γn)1/n = limn→∞(γn)1/n. In particular, γ = limn→∞(γn)1/n

exists.
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Proof. We note γn−1 + γn ≤ γn for each n ≥ 1 since γn ≥ 0 for all n ≥ 0. Also γm ≤ γm+2,
by Lemma 8.32. So,

γn−1 + γn ≤ γn−1 + γn

γn−3 + γn−2 ≤ γn−1 + γn

γn−5 + γn−4 ≤ γn−3 + γn−2 ≤ γn−1 + γn
...

γ1 + γ0 ≤ γn−1 + γn

Summing, we have

γn =
n∑

i=0

γi ≤ n(γn−1 + γn)

So,

γn−1 + γn ≤ γn ≤ n(γn−1 + γn)

We note that either γn or γn−1 is equal to 0, so

lim
n→∞

(γn)
1/n ≤ lim

n→∞
(γn)

1/n ≤ lim
n→∞

(nγn)
1/n = lim

n→∞
(γn)

1/n

So, by the squeeze theorem, limn→∞(γn)1/n exists, and is equal to limn→∞(γn)1/n. �

We now provide some examples of what Grigorchuk’s criteria can tell us about the amenabil-
ity of groups.

Example 8.35. Let G = F2, i.e. the free group on two generators. We need to calculate γn,
the number of reduced words of length n equal to the identity in this group. Clearly γ0 = 1.
Note that, since there are no relations in the free group, there is no way to have a reduced
word that is equal to the identity. So, γn = 0 for n ≥ 1. Therefore, γn = 1 for all n, and so
γ = limn→∞(γn)1/n = limn→∞(1)1/n = 1. Therefore, G is not amenable, and we have in fact
confirmed that it is free.

We will now show an example of a group which is amenable.

Example 8.36. Let G = Z
2. We note that Z2 = 〈e1, e2 | e1e2 = e2e1〉. This is generated by

two generators, so t = 2. Since we know Z2 to be abelian and hence amenable, we expect
γ = 2t− 1 = 3.
Finding the number of reduced words of length n in this group equal to the identity turns
out to be a non-trivial combinatorics problem. We can find the result as Lemma 4.1 due to
Kempton [23] on page 8 in which we learn that

γ2n =
n∑

i=0

(−3)i
(
2n− i

i

)(
2n− 2i
n− 1

)2

−
n−1∑
i=0

(−3)i
(
2n− i− 2

i

)(
2n− 2i− 2
n− i− 2

)2

Asymptotically, this behaves like

γ2n ∼ 2

πn
32n−1

which is Corollary 4.2 from Kempton [23] on page 8.
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Calculating

γ = lim
n→∞

(γ2n)
1/2n

= lim
n→∞

(
2

πn
32n−1

)1/2n

= lim
n→∞

(
2

πn

)1/2n

lim
n→∞

(
32n−1

)1/2n
= lim

n→∞

(
2

π

)1/2n

lim
n→∞

(
1

n

)1/2n

lim
n→∞

(
31−

1
2n

)
= 1 · 1 · 3 = 3

And so γ = 3, as expected and we have shown that Z2 is in fact amenable.

Admittedly this proof of amenability of Z2 is more cumbersome than proving it using Følner
sequences or invariant measures, but it is helpful as an illustrative example. Sometimes actu-
ally working with the groups on which we are trying to prove amenability can be extremely
difficult. In these cases it is sometimes far more helpful and enlightening to work with word
growth in these groups and invoke Grigorchuk’s criteria.

9. Topological Full Group

In this section, we introduce another group associated with a dynamical system. Recall
the centralizer of a dynamical system is a group which captures the symmetries of that
system. The topological full group of a dynamical system has been shown to contain all the
information about a dynamical system, up to a reversal in time. See Medynets, Bezuglyi
[3] for details. Principally, in this section we are concerned with determining when the
topological full group of dynamical systems is amenable. The motivation for this is trying
to find an example of an amenable group which is simple, finitely generated and finitely
presented.

Let X ⊆ AZ be a subshift on some finite alphabet A. Let T : X → X be single homeo-
morphism which is the shift action on X. We assume that T is minimal, that is there are
no nonempty, closed T -invariant proper subsets of X. Alternatively, T is minimal if every
orbit is dense in X. Let Ln(X) be all the words of length n which appear in points in X.
Furthermore, we want to restrict Ln(X) to be such that for all w ∈ Ln(X), wi 
= wi+1. That
is, the words of length n do not contain two consecutive letters which are the same. If X
does not have this property, we can always shift to a higher block code. This means we can
take our letters to be elements of Ak for some k > 1. It is known that, as long as X is
infinite, such a (finite) k will always exist (Lind and Marcus[27]). Let the minimum such
number be k and let B be our new alphabet consisting of words from Ak.

For x ∈ X and b ∈ B, define

σb(x) =

⎧⎪⎨
⎪⎩
Tx if x0 = b

T−1x if x−1 = b

x otherwise
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Note that, the condition of wi 
= wi+1 is important so that this function is well defined.
Otherwise, if two of the same letters appeared consecutively there would be ambiguity over
whether the first or second case applied.

The function σb is defined for letters b ∈ B. We can similarly define σw where w is a word
containing letters in B. The word w does not necessarily need to be a word in X. Say
w = b0b1 . . . bn. Then, σw = σb0σb1 . . . σbn .

So, σw acts on a point x ∈ X by either shifting the point left or right one place for each
letter it sees in the central window. Note that, if |w| = n, then we need only to look at the
the central window of x of length 2n+ 1.

Example 9.1. Let B = {0, 1, 2, 3, 4, 5, 6, 7}, and let w = 3342. Suppose x = . . . 6234|71034 . . .,
where the first entry to the right of the vertical bar is x0. Applying σw, we first apply σ2.
Note

σ2(x) = . . . 6234|71034 . . . since 2 doesn’t appear at the 0th or −1st spot
σ4σ2(x) = . . . 623|471034 . . .

σ3σ4σ2(x) = . . . 62|3471034
σw(x) = σ3σ3σ4σ2(x) = . . . 623|471034

Here we see that applying σ essentially is equivalent to shifting the vertical bar separating
positive and negative time back and forth.

We are interested in finding when applying σw reduces to the identity, i.e. which words have
the property so that when we are done shifting the vertical bar back and forth, we are left
with what we began with.

Let G = 〈σb | b ∈ B〉. Let Bn = {w ∈ Bn | σw = 1}. In other words, Bn is all the words
w of length n containing letters from B which when σw is applied to any point x ∈ X acts
as identity, i.e. σw(x) = x. We then note that, using the notation from Theorem 8.31,
|Bn| = γn. This observation gives us a way to check the amenability of G. In particular, we
want to calculate

lim
n→∞

|Bn|1/n

If G is amenable, we would expect this limit to be equal to 2|B|−1, by Grigorchuk’s Criteria.
The set G is not exactly the topological full group. The definition of the full group is a little
more complicated.

Note that, for each word w ∈ Bn and point x ∈ X, σw(x) = T n(x)x. That is, every function
σw acts as some power of the shift on x.

Definition 9.2 (Cocycle). Let w ∈ Bn be a word and x ∈ X. The value n(x) such that
σw(x) = T n(x) is the cocycle. Note that the cocycle depends on the point x.

Definition 9.3. The topological full group GX is defined as GX = {S : X → X | S(x) =
T n(x)(x) ∀x ∈ X and all continuous functions n : X → Z}.
Definition 9.4. Let G be a group. Then its commutator subgroup is G′ =< [g1, g2] | g1, g2 ∈
G >, where [g1, g2] = g1g2g

−1
1 g−12 . It can be checked that G

′ ⊆ G is a subgroup.
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Loosely speaking, this subgroup tells us how far a group is from being abelian. This is
characterized in the following proposition.

Proposition 9.5. Let G be a group and G′ its commutator subgroup. Then G/G′ is abelian.

Proof. Let h1, h2 ∈ G/G′. Then h1 = g1G
′ for some g1 ∈ G and h2 = g2G

′ for some g2 ∈ G.
So h1h2 = g1g2G

′ and h2h1 = g2g1G
′. Note g1g2g

−1
1 g−12 G′ = G′ since g1g2g

−1
1 g−12 ∈ G′. So

g1g2G
′ = g2g1G

′ ⇒ h1h2 = h2h1. And so G/G′ is abelian. �

Now, let GX be the full group of a subshift X and G be defined as above. Then G′X = G′ ⊆
G ⊆ GX . Furthermore, it is a basic fact (Bogopolskij [4]) that the commutator subgroup is
a normal subgroup. Additionally, it is known (Paterson [31]) that if H is a normal subgroup
of G and G is amenable then H is amenable. So, G′X is a normal subgroup of G and so if
we can show that G is amenable, then we can show that G′X is amenable. As such, we seek
the amenability of the group G in order to learn about the amenability of the topological
full group.

Fibonacci Substitution. We studied the full group on one particular dynamical system
called the Fibonacci Substitution. It is defined by a simple substitution rule.

Definition 9.6 (Fibonacci Substitution). Let A = {0, 1} be the alphabet. Define α as
0 �→ 01 and 1 �→ 0. Then limk→∞ αk(0) defines a unique point ω, known as the Fibonacci

Word. Let X be the system defined by this point, i.e. X = (O(ω), T ).

This is called a substitution system because the rule that defines it is a substitution rule. In
particular, whenever we see 0 we substitute it with 01, and whenever we see 1 we substitute
it with 0.

We will compute the first few values of the Fibonacci word:

0→ 01→ 010→ 01001→ 01001010→ 0100101001001→ 010010100100101001010 . . .

Definition 9.7. The point ω which is the limiting point of this process is known as the fixed
point in this system because it is fixed under the substitution rule.

This substitution rule gives rise to a number of interesting properties. We note that any
finite block which could occur in the orbit closure of the fixed point must occur in the fixed
point itself. We analyze the number of words of length n.

Let w(n) be the allowable words in the Fibonacci substitution of length n. We will list out
w(n) for some small numbers.

w(1) = 0, 1

w(2) = 01, 00, 10

w(3) = 010, 001, 101, 100

w(4) = 0100, 0101, 0010, 1010, 1001

w(5) = 01001, 01010, 00101, 00100, 10100, 10010

w(6) = 010010, 010100, 001010, 001001, 101001, 100101, 100100

w(7) = 0100101, 0100100, 0101001, 0010100, 0010010, 1010010, 1001010, 1001001
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There are a few things to note here, Firstly, |w(n)| = n + 1. Additionally, because of this
relationship, each word in w(n) either makes one word in w(n+ 1), and one of these words
makes two words in w(n + 1). Understanding this relationship helps us in analyzing and
computing the cogrowth of the topological full group.

The numerical analysis was performed in Mathematica, and is contained in Appendix A.
Results are shown in Table 1.

In the first column of this table we have the computation time in seconds that it required
us to find the number of words that reduced to the identity. We note that this time grows
exponentially with n. As such, in order to compute the number of words that reduce to
the identity for larger n, we require greater computational limits, or we must organically
improve the algorithm.

The second column of the table indicates the word length. In particular, the algorithm looks
for words which reduce to the identity one word at a time, increasing the word length after
it has exhausted all the words of a specific length. We note that we only use even values for
the word length, because it is not possible that an odd length word reduces to the identity.

The third and fourth column show how many words in the Fibonacci Substitution reduce to
the identity. We call these trivial reduced elements because they are trivial when reduced.

Table 1. Cogrowth Calculations for the Full Group of the Fibonacci Substi-
tution Performed in Mathematica

Finally, in the last column of the table, we have the cogrowth of this group. We expect that
this limit should converge to 82 = 64 which would mean that this group is amenable.

We expect that this criterion can be used to study the topological full group of multidimen-
sional systems. In particular, a still open problem in mathematics is about the existence
of a dimple finitely presented infinite amenable group. An example of such a group has
eluded mathematicians, however we suspect that such a group may arise as the commuta-
tor subgroup of the topological full group of a multidimensional subshift. This would be a
unique strategy in trying to solve problems in the field of algebra and group theory with the
field of dynamical systems. This would work to further establish and develop the intricate
connection between algebra and dynamical systems.
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Appendix A

(∗ Execute t h i s c e l l ∗)

A0 = ”0” ; (∗ the f i r s t l e t t e r o f the f i x ed po int ∗)
(∗ Def ines the s ub s t i t u t i o n r u l e ∗)
substRule [ l e t t e r , i t e r a t i o n s ] :=
Last [ Subst i tut ionSystem [{”0” −> ”01” , ”1” −> ”0”} , l e t t e r ,
i t e r a t i o n s ] ]

(∗ Returns the p r e f i x o f l ength n f o r the f i x ed po int s t a r t i n g at A0 ∗)

nPre f ix [ n ] :=
Module [{word} , word = A0 ;
While [ Str ingLength [ word ] < n , word = substRule [ word , 1 ] ] ;
Str ingTake [ word , {1 , n } ] ]

(∗Returns the l i s t o f subwords o f l eng th s n o f the g iven word ∗)
nSubwords [ word , n ] :=
Sort [ De l e t eDup l i ca t e s [
S t r i ngJo in /@ Par t i t i on [ Characters [ word ] , n , 1 ] ] ]

(∗
Returns the l i s t o f words o f l ength n f o r a g iven s ub s t i t u t i o n . \
Caveat : the a lgor i thm simply takes the p r e f i x o f l ength 2∗n and f i n d s \
a l l subwords o f l ength n in i t , which i s t e chn iqua ly i n c o r r e c t .
TO−DO: Given n>0, compute a constant c=c (n ) , based on the \
s ub s t i t u t i o n matrix M, such that the p r e f i x o f the f i x e d po int o f \
l ength c conta in s a l l words o f l ength n . The p r im i t i v i t y o f the system
( in fac t , the minimal i ty ) guarantees that such a c e x i s t s . We’ ve got \
to f i nd an algor i thm that would compute c .
∗)
nBlocks [ n ] :=
Module [{ pr e f i x , wordsOld , wordsNew} , p r e f i x = nPre f ix [ 2∗n ] ;
wordsOld = nSubwords [ p r e f i x , n ] ;
wordsNew = nSubwords [ substRule [ p r e f i x , 1 ] ] ;
While [ ! ( wordsOld === wordsNew ) , wordsOld = wordsNew ;
p r e f i x = substRule [ p r e f i x , 1 ] ; wordsNew = nSubwords [ p r e f i x , n ] ] ;
wordsNew ]

In t h i s s e c t i on , we f i nd the minimal l ength f o r n−words such
that f o r any w in L n (X) , the c y l i nd e r s e t s [w] ,T[w ] , . . . , Tˆ4 [w]
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are d i s j o i n t . We then use the words in L n (X) as a new alphabet
and we r ewr i t e the o r i g i n a l system in t h i s new alphabet .
In other words , we switch to the n−f o l d s ub s h i f t .
Set B = L n (X) . We then con s i d e r e lements
sigma b (x ) = Tˆb(x ) ( x ) , where b(x ) = 1 i f x0=b ,
b(x)=−1 i f x(−1)=b and b(x)=0 e l s ewhere .

Thus , the t o p o l o g i c a l f u l l group i s amenable i f f the group
<sigma b , b\ in B> i s amenable .

I t i s p o s s i b l e that i t would s u f f i c e to use n=2 in the d e f i n i t i o n o f B.
The homeomorphisms sigma b are a l r eady wel l−de f ined . We would need to
v e r i f y that with t h i s new d e f i n i t i o n the theorem above s t i l l ho lds .

The main r a t i o n a l e behind us ing the group <sigma b , b\ in B> i s that t h i s
group i s a l g o r i t hm i c a l l y de f i n ed .
Our ob j e c t i v e i s to apply the co−growth c r i t e r i o n to <sigma b , b\ in B>.

(∗ Execute t h i s c e l l ∗)

(∗ Finds a l l words o f l ength n f o r the g iven s ub s t i t u t i o n and c r e a t e s \
a ru l e that a s s i g n s a unique l e t t e r f o r each n−block ∗)
rewr i t ingSystem [ n ] :=
Table [ nBlocks [ n ] [ [ i ] ] −> Alphabet [ ] [ [ i ] ] , { i , Length [ nBlocks [ n ] ] } ]
(∗ Returns the f i x e d po int in the new alphabet o f n−b locks . ∗)
r ewr i t eF ixedPo int [ l ength , nLe t t e r s ] :=
St r ingJo in [
Subst i tut ionSystem [ rewr i t ingSystem [ nLet t e r s ] ,
S t r i ngJo in /@ Par t i t i on [ Characters [ nPre f ix [ l ength ] ] , nLetters , 1 ] ] ]

(∗ Find the minimal l ength f o r n−Block words such that in the \
conugate / r ewr i t t en system no block o f l ength f i v e has repeated \
l e t t e r s . ∗)
nMin = 1 ; While [
Min [ Length /@

De l e t eDup l i ca t e s /@
Pa r t i t i on [ Characters [ r ewr i t eF ixedPo int [80 + nMin , nMin ] ] , 5 ,
1 ] ] < 5 , nMin++];

rewriteWord [ word , nLe t t e r s ] :=
St r ingJo in [
Subst i tut ionSystem [ rewr i t ingSystem [ nLet t e r s ] ,
S t r i ngJo in /@ Par t i t i on [ Characters [ word ] , nLetters , 1 ] ] ]
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(∗ Returns b locks o f l ength n f o r the r ewr i t t en / conjugate system ∗)
nNewBlocks [ n ] :=
Module [{words } , words = nBlocks [ n + nMin − 1 ] ;
Table [ rewriteWord [ words [ [ i ] ] , nMin ] , { i , Length [ words ] } ] ]

Here we count the number o f f r e e group elements o f l ength
n that vanish on every word from the language o f the system .
In other words , the a lgor i thm counts the number o f e lements
o f l ength n in the f r e e group r ep r e s en t a t i on that are t r i v i a l .

(∗ Execute t h i s c e l l ∗)

(∗ Checks whether freeGen i s in the reduced form . Returns True i f \
freeGen i s in the reduced form and Fal se i f o the rw i s e .
freeGen must be an array o f i n t e g e r s .

∗)
reducedQ = Compile [{{ freeGen , In t ege r , 1}} ,

Module [{ r e t = True } ,
Do [ I f [ f reeGen [ [ i ] ] == freeGen [ [ i + 1 ] ] , r e t = Fal se ; Break [ ] ] , { i ,

Length [ freeGen ] − 1 } ] ;
r e t (∗ r e turn value ∗)
] ,
Compilat ionTarget −> ”C”
] ;

(∗ Computes the value o f the co cy c l e o f the element freeGen at the \
c y l i nd e r s e t [ word ] determined by ”word ” .
∗)
cocycleFun =
Compile [{{ freeGen , In t ege r , 1} , {word , In t ege r ,

1} , { freeGroupLength , I n t e g e r }} ,
Module [{ pos } ,
pos = freeGroupLength + 1 ;
Fold [#1 +

Which [ word [ [#1 + 1 ] ] == #2, 1 , word [ [# 1 ] ] == #2, −1, True ,
0 ] &, pos , freeGen ] − pos (∗ r e turn value ∗)

] ,
Compilat ionTarget −> ”C”
] ;

(∗ Execute t h i s c e l l ∗)

(∗ The func t i on ” t r iv ia lE l ementCounte r ” r e tu rn s 1 i f the element \
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grElem , g iven by an array o f i n t e g e r s , van i she s on every word from \
the l i s t ”words” or r e tu rn s 0 i f o the rw i s e .
words i s an 2−dim array o f i n t e g e r s . Rows r ep r e s en t b−ary encodings \
o f words from Ln(X) .
∗)

t r iv ia lE l ementCounte r =
Compile [{{ grElem , In t ege r , 1} , {words , In t ege r ,

2} , { s izeAlph , I n t e g e r } , { freeGroupLength , I n t e g e r } , {nWords , \
I n t e g e r }} ,
Module [{ va l = 1 , reducedQ = True , pos } ,
(∗ Checking whether the element i s in the reduced form ∗)
Do [
I f [ grElem [ [ i ] ] == grElem [ [ i + 1 ] ] ,
reducedQ = False ;
va l = 0 ;
Break [ ]
] , (∗ change reducedQ to False , s e t va l =0, and Break away∗)
{ i , Length [ grElem ] − 1 } ] ;
I f [ reducedQ ,

Do [
(∗

check ing whether the element grElem van i she s on each word from \
words . ∗)

I f [ cocycleFun [ grElem , words [ [ i ] ] , freeGroupLength ] != 0 ,
va l = 0 ; Break [ ] ] ,

{ i , nWords } ] ] ;
va l (∗ r e turn value ∗)

] ,
Compilat ionTarget −> ”C”
]

(∗ Execute t h i s c e l l ∗)

(∗ Optimized Compiled Function count ing the number o f e lements \
van i sh ing on a l l c y l i n d e r s e t s ∗)
coGrowthCounter [ freeGroupLength ] :=
Module [{ grElem , val , nHits , s izeAlph , words , t o t a l I t e r , nWords ,
maxInteger , nRuns , nSteps } ,

s i zeAlph = Length [ nNewBlocks [ 1 ] ] ;
(∗ convert words in s t r i n g s o f i n t e g e r s ∗)

words = (# − 1) & /@
LetterNumber /@ Characters /@ nNewBlocks [ 2∗ freeGroupLength + 2 ] ;

nWords = Length [ words ] ;
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t o t a l I t e r = s izeAlph ˆ freeGroupLength ;
nHits =

Paral le lSum [
t r iv ia lE l ementCounte r [
I n t e g e rD i g i t s [ k , s izeAlph , freeGroupLength ] , words , s izeAlph ,
freeGroupLength , nWords ] ,
{k , 0 , t o t a l I t e r − 1 } ] ;

{ freeGroupLength , nHits} (∗ r e turn ∗ ) ] ;
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